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Overview
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Outline
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Inverted Classroom
Andrew Ng: “Machine Learning”

http://coursera.org
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Neural networks: Andrew Ng videos

Model representation I

Model representation II
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A single neuron

Input nodes: x1, x2, x3

Parameters/weights: lines connecting nodes

Raw input to neuron: weighted sum ΘT~x =
∑3

i=1 θixi

Nonlinear activation function (e.g., sigmoid):
g(ΘT~x) = 1/(1 + exp(−ΘT~x))

Output of neuron: g(ΘT~x)
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A neuron

Inputs: x1, x2, x3

Parameters (= weights = lines): θ1, θ2, θ3

Activation function (e.g., sigmoid / logistic)

Hypothesis: hΘ(~x) = (ΘT~x)
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A neural network

Input layer (same as before): xi

Hidden layer, here: three neurons

Output layer, here: single neuron

Activations a
(k)
i , k = layer

Full connectivity

Same or different activation functions
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A neural network
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Another neural network architecture
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Another neural network architecture
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Forward propagation of activity

a
(i)
j = gi (Θ

T
ij ~a

(i−1)) = 1/(1 + exp(−ΘT
ij ~a

(i−1)))
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Learning/Training: Backpropagation

As before: cost function

As before: objective
(find parameters that minimize cost)

As before: gradient descent

That is: compute gradient and move along gradient

What’s new:
We use backpropagation to compute the gradient.
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Gradient descent
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Neurons can be trained to detect features.
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Deep learning:

Each layer learns more powerful/abstract features.
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Increasingly abstract features in vision
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Number of weights/parameters

|L1| ∗ |L2|+ |L2| ∗ |L3| = 3 · 3 + 3 · 1 = 12

Schütze (LMU Munich): Neural networks 18 / 33



Neural networks: Basics Convolutional neural networks

Exercise: Number of weights/parameters
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Task: Does this sentence mention an officer leaving?

Given: A sentence

Workforce Solutions Alamo fired CEO John Hathaway yesterday.

Binary classification task

Class “yes”: This sentence contains information about an officer
leaving a company (so a financial analyst should look at it).
Class “no”: This sentence does not contain information about an
officer leaving a company (so nobody has to look at it).

Correct class in this case?

Class “yes”: This sentence contains information about an officer
leaving a company.
Class “no”: This sentence does not contain information about an
officer leaving a company.
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Task: Does this sentence mention an officer leaving?

Given: A sentence

CEO John Hathaway fired his gardener yesterday.

Correct class in this case?

Class “yes”: This sentence contains information about an officer
leaving a company.
Class “no”: This sentence does not contain information about an
officer leaving a company.
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Task: Does this sentence mention an officer leaving?

Given: A sentence

This picture shows parting CEO Cook talking with ex-CFO Dyer.

Correct class in this case?

Class “yes”: This sentence contains information about an officer
leaving a company.
Class “no”: This sentence does not contain information about an
officer leaving a company.

Schütze (LMU Munich): Neural networks 22 / 33



Neural networks: Basics Convolutional neural networks

Simple architecture for detecting leaving events
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Hypothesis? Parameters? Cost? Objective?
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Simplest architecture: Fixed-length input

→ Padding

1 2 3 4 5 6 7 8 9
The board forced him to resign PAD PAD PAD
A majority of the board forced him to quit

Eventually the escalation led him to resign PAD PAD
It’s legal threats that compelled him to leave PAD

key idea of convolution:
learn a filter for the pattern
“[force] [pronoun] to [leave]”
filter = feature detector
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Exercise

If you use this architecture, why is it hard to learn the filter “[force]
[pronoun] to [leave]”?
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Outline

1 Neural networks: Basics

2 Convolutional neural networks
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Use convolution&pooling architecture Input layer

Convolution layer Convolution layer (filter size 3)

Max pooling layer Applying convolutional filter
Max pooling ⇒ Sentence describes “a leaving

event”. Convolution computes features. Max
pooling selects max feature.

convolution&pooling=compute&select features
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Convolution & pooling

Widely used in vision

Recent development: widely used in NLP

Best example of successful transfer
from vision to NLP
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Convolution and max pooling in vision
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Exercise

Try to find a good example of a typical NLP task for which max
pooling (i.e., detecting whether or not a particular type of thing
occurs in a sentence) is the wrong approach.

(Alternatively, try to find a good example of a typical vision task
for which max pooling (i.e., detecting whether or not a particular
type of thing occurs in a scene) is the wrong approach.)
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Convolutional filter H

a = g(H ⊙ X )

Kernel size k : length of subsequence

H is applied to every subsequence of length k .

X is the representation of the subsequence,
of dimensionality D × k .

D is the dimensionality of the embeddings.

H also has dimensionality D × k .

⊙ is the (Frobenius) inner product:
H ⊙ X =

∑
(i ,j)HijXij

g : nonlinearity (e.g., sigmoid)
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Notation

V vocabulary size
D embedding dimensionality
C number of classes
C i number of input channels
C o number of output channels
Ks kernel sizes
N minibatch size
W padded sequence length
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