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Abstract

Sentiment lexicons and other linguistic
knowledge proved to be beneficial in po-
larity classification. This paper intro-
duces a linguistically informed Convolu-
tional Neural Network (lingCNN), which
incorporates this valuable kind of informa-
tion into the model. We present two in-
tuitive and simple methods: The first one
integrates word-level features, the second
sentence-level features. By combining
both types of features our model achieves
results that are comparable to state-of-the-
art systems.

1 Introduction

This paper explores the use of Convolutional Neu-
ral Networks (CNN) for sentiment analysis. CNNs
reach state-of-the-art results in several polarity
classification tasks (Mohammad et al., 2013; Tang
et al., 2014a; Kim, 2014; Severyn and Moschitti,
2015; Kalchbrenner et al., 2014). Reasons are
their ability to deal with arbitrary input sentence
lengths and to preserve word order. Moreover,
they learn to find the most important polarity in-
dicators and ignore the rest of the sentence. That
is beneficial, since most of the words in a text do
not convey sentiment information. Finally, CNNs
can make use of powerful pretrained word repre-
sentations (e.g., Mikolov et al. (2013)).

However, training such a model requires a large
amount of labeled training data. One approach to
address this issue is to enlarge training data in a
semi-supervised fashion (Severyn and Moschitti,
2015). Instead, we propose to make use of al-
ready available linguistically motivated resources.
Especially sentiment lexicons are important cues
for polarity classification (cf. Mohammad et al.
(2013)).

We introduce two intuitive and simple methods
of incorporating linguistic features into a CNN.
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Figure 1: LingCNN architecture

The resulting architecture is called linguistically
informed CNN (lingCNN). The first method is to
add features to every word in a sentence. That
enables the model to learn interactions between
words and between individual word embeddings
and linguistic features. The second method is
to add feature vectors that are computed based
on the entire sentence. The results show that
word-level features can improve the classification
and are more beneficial than sentence-level fea-
tures. However, the combination of both meth-
ods reaches the best performance and yields re-
sults that are comparable to state-of-the-art on the
SemEval Twitter polarity data set.

2 LingCNN Architecture

Figure 1 depicts the lingCNN architecture. We use
the following terminology. LT ∈ Rd×|V | denotes
a lookup table that assigns each word in the vocab-
ulary V a d-dimensional vector. Given a sequence
of n tokens t1 to tn the model concatenates all n



word representations to the input of the lingCNN:

Z =

 | | |
LT·,t1 · · · LT·,tn
| | |


The lingCNN consists of three types of layers

(in the following indicated by a superscript index):
a convolution layer, a max pooling layer, and a
fully connected softmax layer.

2D Convolution Using a convolution matrix
M ∈ Rd×m (also called filter matrix) the lingCNN
performs a 2d convolution:

a(1)o =
d∑

i=1

m∑
j=1

Mi,jZi,o+j

, where a(1) is the layer’s activation and o ∈
[0, n − m] is the current position of the convolu-
tion.

The width of the filter m specifies how many
words the filter spans (m ∈ {3, 4} in Figure 1).
The model uses multiple filter sizes at this level
and several filters per filter size. Furthermore, we
make use of wide convolution (Kalchbrenner et al.,
2014), which pads the input Z with m − 1 zero
columns at the left and right side (i.e., the sentence
length becomes n+2∗ (m−1)). This makes sure
that every column of the filter reaches every col-
umn of the input. The model uses 2d convolution,
because a filter that span all d dimensions in height
has the advantage that it can find features that in-
teract with multiple dimensions.

Max Pooling To keep only the most salient fea-
tures, the lingCNN selects the largest value of each
convolution output. This way we hope to find the
most important polarity indicators, independently
of their position. To the remaining values we add
a bias b(2) and apply a rectified linear unit non-
linearity: a(2) = max(0,a(1) + b(2)) (Nair and
Hinton, 2010).

Softmax Next, the output values of the pooling
layer are concatenated with a sentence-level fea-
ture vector s: a(2)

′
= [a(2) s], which is the input

to a fully connected layer: z =Wa(2)
′
+b(3). This

layer converts its input into a probability distribu-
tion over the sentiment labels using the softmax
function: a(3)i = exp(zi)∑

j exp(zj)
.

3 Word-level Features

To incorporate linguistic features at word-level
into the learning process we create the lookup ta-

ble by concatenating two matrices: LT =

[
P
Q

]
.

P ∈ RdP×|V | denotes a matrix of low-dimensional
word representations, so called word embeddings.
dP , the size of the embeddings, is usually set to 50
– 300, depending on the task. We train skip-gram
word embeddings (Mikolov et al., 2013) with the
word2vec toolkit1 on a large amount of Twitter
text data. Previous work showed that pretrained
word embeddings are helpful in various tasks (e.g.,
Kim (2014)). We first downloaded about 60 mil-
lion tweets from the unlabeled Twitter Events data
set (McMinn et al., 2013). The vocabulary is built
out of all the words of the SemEval training data
and the 50k most frequent words of the Twitter
Events data set. Additionally, an unknown word
is added to the vocabulary to learn a word em-
bedding for out-of-vocabulary words. Finally, a
skip-gram model with 60-dimensional vectors is
trained on the unlabeled data and used to initialize
the word embeddings matrix P . The matrix P is
further fine-tuned during model training.

In addition to P , we introduce another matrix
Q ∈ RdQ×|V |, which contains external word fea-
tures. In this case dQ is the number of features for
a word. The features in Q are precomputed and
not embedded into any embeddings space, i.e., Q
is fixed during training. We use the following fea-
ture types:

Binary Sentiment Indicators Binary features
that indicate a word’s prior polarity. We create two
such features per word per lexicon. The first fea-
ture indicates positive and the second negative po-
larity of that word in the lexicon. The lexicons for
this feature type are MPQA (Wilson et al., 2005),
Opinion lexicon (Hu and Liu, 2004), and NRCC
Emotion lexicon (Mohammad and Turney, 2013).

Sentiment Scores The Sentiment140 lexicon
and the Hashtag lexicon (Mohammad et al., 2013)
both provide a score for each word instead of just a
label. We directly incorporate these scores into the
feature matrix. Both lexicons also contain scores
for bigrams and skip ngrams. In such a case all
words of the ngram receive the same ngram score.

1https://code.google.com/p/word2vec/



Binary Negation Following Christopher Potts,2

we mark each word between a negation word and
the next punctuation as negated.

In total each word receives 13 additional fea-
tures (3 ∗ 2 binary, 2 ∗ 3 scores, 1 negation). Since
lingCNN performs a 2d convolution, it allows the
detection of features that interact with word em-
beddings and linguistic features.

4 Sentence-level Features

An alternative to adding word-level features into
the training process is to add sentence-level fea-
tures. These features are concatenated with the
pooling layer’s output to serve as additional input
for the softmax layer as described above. We use
the following feature types:

Counts We use the following counts: number of
terms that are all upper case; number of elongated
words such as ‘coooool’; number of emoticons;3

number of contiguous sequences of punctuation;
number of negated words.

Sentiment Scores The computed lexicon fea-
tures are the number of sentiment words in a sen-
tence, the sum of sentiment scores of these words
as provided by the lexicons, the maximum sen-
timent score, and the sentiment score of the last
word. These four numbers are calculated for all 5
previously mentioned sentiment lexicons. More-
over, they are computed separately for the entire
tweet, for each POS tag, for all hashtag tokens
in the tweet, and for all capitalized words in the
tweet (Mohammad et al., 2013).

5 Experiments and Results

5.1 Data

To evaluate the lingCNN, we use the SemEval
2015 data set (Rosenthal et al., 2015). We train
the model on the SemEval 2013 training and de-
velopment set and use the SemEval 2013 test set
as development set (Nakov et al., 2013; Rosenthal
et al., 2015). The final evaluation is done on the
SemEval 2015 test set. Table 1 lists all data set
sizes in detail.

To test the generality of our findings we addi-
tionally report results on the manually labeled test
set of the Sentiment140 corpus (Sent140) (Go et

2http://sentiment.christopherpotts.net/lingstruc.html
3The list of emoticons was taken from SentiStrengh:

http://sentistrength.wlv.ac.uk/

total pos neg neu

training set 9845 3636 1535 4674
development set 3813 1572 601 1640
SemEval test set 2390 1038 365 987
Sent140 test set 498 182 177 139

Table 1: Data set sizes.

al., 2009). It contains about 500 tweets (cf. Ta-
ble 1), which were collected by searching Twitter
for specific categories, e.g., movies.

The examples in all data sets are labeled
with one of the three classes: positive, neg-
ative, or neutral.4 Similar to the SemEval
shared task we report the macro F1 score of the
positive and negative classes, i.e., F1,macro =
(F1,positive + F1,negative) /2.

Prepocessing The SemEval and Sentiment140
data as well as the unlabeled Twitter Events data
set, which is used for pretraining word embed-
dings, are preprocessed in the following way:
Tweets are first tokenized with the CMU tok-
enizer (Owoputi et al., 2013). Afterwards, all
user mentions are replaced by ‘<user>’ and all urls
by ‘<web>’. We keep hashtags, because they of-
ten contain valuable information such as topics or
even sentiment.

Punctuation sequences like ‘!?!?’ can act as ex-
aggeration or other polarity modifiers. However,
the sheer amount of possible sequences increases
the out-of-vocabulary rate dramatically. There-
fore, all sequences of punctuations are replaced by
a list of distinct punctuations in this sequence (e.g.,
‘!?!?’ is replaced by ‘[!?]’).

5.2 Model Settings
Baseline Systems We use the SemEval 2013
and SemEval 2014 winning system (Mohammad
et al., 2013) as baseline. This system uses a
Support Vector Machine (SVM) for classification.
According to their analysis, bag-of-word features
({1, 2, 3}-grams for words and {3, 4, 5}-grams for
characters) and linguistic features are the most im-
portant ones. Therefore, we implement both of
them. There are three feature settings: (i) only
bag-of-words features (for both, word and char-
acters), (ii) only linguistic features, and (iii) the
combination of bag-of-words and linguistic fea-
tures. We use LIBLINEAR (Fan et al., 2008) to
train the model and optimized the C parameter on
the development set.

4objective instances were considered to be neutral



For reference we add the first and second best
systems of the SemEval 2015 tweet level polarity
task: Webis (Hagen et al., 2015) and UNITN (Sev-
eryn and Moschitti, 2015). Webis is an ensemble
based on four systems, which participated in the
same task of SemEval 2014. The UNITN system
trains a CNN similar to ours. They rely on pre-
training the entire model on a large distant super-
vised training corpus (10M labeled tweets). This
approach is orthogonal to ours and can easily be
combined with our idea if linguistic feature inte-
gration. This combination is likely to increase the
performance further.

LingCNN To analyze the effect of the linguistic
features and our extensions we train different CNN
models with different combinations of features:
(i) only pretrained word embeddings, (ii) integra-
tion of word-level features, and (iii) integration of
sentence-level features. The model updates all pa-
rameters during training θ = {P,M∗,W, b(∗)}.
We set the embeddings size to dP = 60. Our
model uses filters of width 2 – 5 with 100 fil-
ters each. We train the models for a maximum of
30 epochs with mini-batch stochastic gradient de-
scent (batch size: 100). The training was stopped
when three consecutive epochs lead to worse re-
sults on the development set (early stopping). We
use AdaGrad (Duchi et al., 2011) for dynamic
learning rate adjustment with an initial learning
rate of 0.01 and `2 regularization (λ = 5e−5).

5.3 Results
Baselines Table 2 lists the SVM results. Sim-
ilar to Mohammad et al. (2013)’s findings, the
combination of ngram and linguistic features gives
the best performance. Both SemEval participating
systems beat the baseline by a large margin.

LingCNN The lower part of Table 2 shows the
lingCNN results. With only word-level features
the model yields similar performance to the SVM
with only linguistic features. Adding sentence-
level features improves the performance to the
level of the SVM baseline system with bag-of-
words and linguistic features. We see that us-
ing pretrained word embeddings to initialize the
model yields large improvements. Sentence fea-
tures on top of that can not improve the per-
formance further. However, word-level features
together with pretrained word embeddings yield
higher performance. The best result is reached
by the combination of word embeddings and both

model features SemEval Sent140

SVM bow 50.51 67.34
ling. 57.28 66.90
bow + ling. 59.28 70.21

Webis 64.84 -
UNITN 64.59 -

emb. word sent.

lingCNN + 57.83 72.58
+ + 59.24 74.36

+ 62.72 77.59
+ + 62.61 79.14
+ + 63.43 80.21
+ + + 64.46 80.75

Table 2: Results of baselines (upper half) and
lingCNN (lower half).

types of linguistic features. This performance
is comparable with both state-of-the-art SemEval
winner systems.

5.4 Analysis

Examples Here, we analyze examples on why
the linguistic features help. Consider the example
“saturday night in with toast , hot choc & <user>
on e news #happydays”. Only the hashtag ‘#hap-
pydays’ indicates polarity. The hashtag exists in
the sentiment lexicon, but does not exist in the
training vocabulary. Therefore, there is no embed-
ding for it. Here is another example: “shiiiiit my
sats is on saturday . i’m going to fail”. ‘Fail’ is
strongly negative in all lexicons. However, it oc-
curs only 10 times in the training set. That is likely
not enough to learn a good sentiment-bearing em-
bedding. As a result, the CNN without linguistic
knowledge classifies the tweet as neutral. Having
linguistic features enables the model to implicitly
incorporate sentiment information into the word
embeddings, helping to classify this example cor-
rectly.

Corpus Size In this section we analyze the ben-
efit of linguistic features with respect to the size
of the training corpus. Table 3 shows the perfor-
mance of the CNN with and without linguistic fea-
tures, where we only use the first 1000 and 3000
training samples. We clearly see that linguistic
features are helpful in all cases. Especially, where
only limited training data is available, the perfor-
mance difference is large. Even with only 1000
training samples, the CNN with linguistic features
yields a reasonable result of 60.89. The CNN that
does not have access to this source of information
reaches only 49.89. Although, the performance



1000 3000 all

emb. 49.89 58.10 62.72
emb. + word + sent. 60.89 62.51 64.46

Table 3: Different training set sizes.

of the CNN without linguistic features increases
much for 3000 training examples, this model is
still more than 4 points behind the linguistically
informed model.

6 Related Work

Collobert et al. (2011) published the first CNN ar-
chitecture for a range of natural language process-
ing tasks. We adopt their idea of using look-up ta-
bles to incorporate linguistic features at the word-
level into the CNN.

Since then CNNs have been used for a va-
riety of sentence classification tasks (e.g., Zeng
et al. (2014)), including polarity classification
(e.g., Kim (2014)). Kalchbrenner et al. (2014)
showed that their DCNN for modeling sentences
can achieve competitive results in this field. Our
CNN architecture is simpler than theirs.

There are alternative approaches of integrating
linguistic features into model training. By adding
more labeled data, implicit knowledge is given to
the model. This approach usually requires manual
labeling effort. A different approach is to incorpo-
rate linguistic knowledge into the objective func-
tion to guide the model training. For instance Tang
et al. (2014b) incorporate the polarity of an ngram
into a hinge loss function.

Tang et al. (2014a) used a CNN to compute rep-
resentations of input sentences. These representa-
tion together with linguistic features on sentence-
level form the input to an SVM. In contrast, we
use linguistic features at the word-level, which al-
lows interaction between linguistic features and
word embeddings. Furthermore, we use simi-
lar sentence-features and directly incorporate them
into the CNN.

In addition to CNNs, researchers have been us-
ing different neural network architectures. How-
ever, each of these has its own disadvantages. A
deep feed forward network cannot model easily
that inserting many types of words into a string
(e.g., “happy to drive my new car” vs “happy to
drive my red new car”) does not change senti-
ment. Recurrent Neural Networks (RNN) (Elman,
1990) and Long Short Term Memory networks
(LSTM) (Hochreiter and Schmidhuber, 1997) are

powerful for unbounded dependencies, but tweets
are short; the sentiment of a tweet is usually de-
termined by one part of it and unlike RNN/LSTM,
convolution plus max pooling can learn to focus
on that. Recursive architectures like the Recursive
Neural Tensor Network (Socher et al., 2013). as-
sume some kind of hierarchical sentence structure.
This structure does not exist or is hard to recognize
for many noisy tweets.

As mentioned before, we use the SemEval 2013
and SemEval 2014 winning system (Mohammad
et al., 2013) as baseline. Moreover, we include
several features of their system to improve the
CNN.

7 Conclusion

In this paper we introduced an intuitive and sim-
ple way of incorporating linguistic word-level and
sentence-level features into a CNN architecture.
Using such features yields significant improve-
ments on two polarity classification Twitter data
sets. Using both feature types, our lingCNN per-
forms comparable to state-of-the-art systems.
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