Word Embeddings for Named Entity Recognition

Fabienne Braune¹

¹LMU Munich

January 25th, 2016

Fabienne Braune (CIS)

Word Embeddings for Named Entity Recognition

January 25th, 2016 · 1

Outline

- Named Entity Recognition
- Peedforward Neural Networks: recap
- Seural Networks for Named Entity Recognition
- Example
- Adding Pre-trained Word Embeddings
- Word2Vec

NAMED ENTITY RECOGNITION

Task

Find segments of entity mentions in input text and tag with labels.

Example inputs:

- Trump attacks BMW and Mercedes
- U.N. official Ekeus heads for Baghdad

Example labels (coarse grained):

- persons PER
- locations LOC
- organizations ORG
- names NAME
- other MISC

Labeled data

Desired outputs:

- Trump PER attacks BMW ORG and Mercedes ORG
- U.N. ORG official Ekeus PER heads for Baghdad LOC

Example annotations (CoNLL-2003):

Surface	POS	Sh-synt	Tag
U.N.	NNP	I-NP	I-ORG
official	NN	I-NP	0
Ekeus	NNP	I-NP	I-PER
heads	VBZ	I-VP	0
for	IN	I-PP	0
Baghdad	NNP	I-NP	I-LOC
		0	0

Classification-based approaches

Given input segment, train classifier to tell:

- Is this segment a Named Entity ?
- Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes Is Trump a named entity ? Yes, it is a person (PER)

Classification-based approaches

• Classifier combination with engineered features (Florian et al. 2003)

- Manually engineer features
- Use large (external) gazetteer
- Combine classifiers (ME, MRR, HMM) trained on annotated data
- ▶ 88.76 F1

• Semi-supervised learning with linear models (Ando and Zhang 2005)

- Train linear model on annotated data
- Add non-annotated data
- 89.31 F1

Classification-based approaches

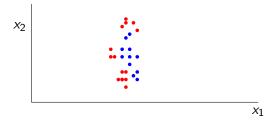
• Use feedforward neural networks (Collobert et al. 2011):

- With raw words 81.74
- With pre-trained word embeddings 88.67
- Using a gazetteer 89.59
- Use sequential models:
 - Linear Chain CRF (linear)
 - LSTM networks (deep)

 \rightarrow Achieve best performance but not covered here

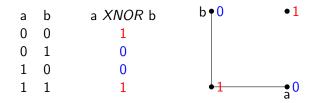
FEEDFORWARD NEURAL NETWORKS: RECAP

Motivation



Cannot be solved using a linear model

Motivation



Features : a, b Feature values : binary

Cannot be solved using a linear model

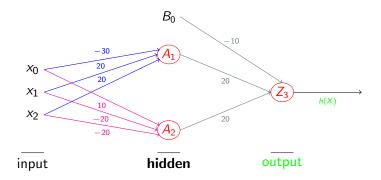
Motivation

Linear models not suited to learn non-linear decision boundaries.

Neural networks can do that

- \rightarrow Through composition of non-linear functions
- \rightarrow Learn relevant features from (almost) raw text
 - \rightarrow No need for manual feature engineering
 - \rightarrow learned by network

Feedforward Neural Network



Computation of hidden layer H:

• $A_1 = \sigma(X \cdot \Theta_1)$

- $A_2 = \sigma(X \cdot \Theta_2)$
- $B_0 = 1$ (bias term)

Computation of output unit h(X):

•
$$h(X) = \sigma(\mathbf{H} \cdot \Theta_3)$$

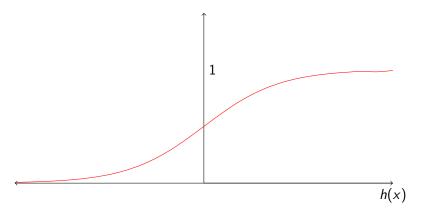
Feedforward Neural Network

Feedforward neural network with:

- 1 input layer X (feature vector)
- 2 weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$
- 1 hidden layer H composed of:
 - 2 activations A₁ = σ(Z₁) and A₂ = σ(Z₂) where:
 ★ Z₁ = X ⋅ Θ₁
 ★ Z₂ = X ⋅ Θ₂
- 1 output unit $h(X) = \sigma(Z_3)$ where:
 - $\blacktriangleright \ Z_3 = \mathbf{H} \cdot \Theta_3$

Non-linear activation function

The sigmoid function $\sigma(Z)$ is often used



Feedforward neural network

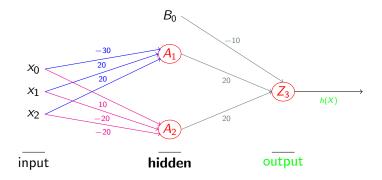
Trump attacks BMW and Mercedes Binray NER task: Is the segment from position 1 to 2 a Named Entity?

Neural network: $h(X) = \sigma(\mathbf{H} \cdot \Theta_n)$, with:

$$\mathbf{H} = \begin{bmatrix} B_0 = 1\\ A_1 = \sigma(X \cdot \Theta_1)\\ A_2 = \sigma(X \cdot \Theta_2)\\ \dots\\ A_j = \sigma(X \cdot \Theta_j) \end{bmatrix}$$

Prediction: If h(X) > 0.5, yes. Otherwise, no.

Feedforward Neural Network



If weights are all random output will be random

- \rightarrow Predictions will be bad
- \rightarrow Get the right weights

Getting the right weights

Training: Find weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that h(X) is the **correct answer** as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with correct labels \mathbf{y}_i , find $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that $h(X) = \mathbf{y}_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) called forward propagation
 - $\rightarrow U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ with error back propagation

Multi-class classification

- More than two labels
- Instead of "yes" and "no", predict $c_i \in C = \{c_1, \cdots, c_k\}$
- NER: Is this segment a location, name, person ...
- Use k output units, where k is number of classes
 - Output layer instead of unit
 - Use softmax to obtain value between 0 and 1 for each class
 - Highest value is right class

NEURAL NETWORKS FOR NER

Classification-based NER

Given input segment, train classifier to tell:

- Is this segment a Named Entity ?
- Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes Is Trump a named entity ? Yes, it is a person (PER)

Labeled data

Desired outputs:

- Trump PER attacks BMW ORG and Mercedes ORG
- U.N. ORG official Ekeus PER heads for Baghdad LOC

Annotation:

Surface	POS	Sh-synt	Tag
U.N.	NNP	I-NP	I-ORG
official	NN	I-NP	0
Ekeus	NNP	I-NP	I-PER
heads	VBZ	I-VP	0
for	IN	I-PP	0
Baghdad	NNP	I-NP	I-LOC
		0	0

Feedforward Neural Network for NER

Training example: Trump attacks BMW (ORG) and Mercedes

Neural network input:

Look at word window around BMW

 \rightarrow Trump_{-2} attacks_{-1} BMW and_1 Mercedes_2

 \rightarrow Lookup feature representation (LT_i) for window

Give LT_i as input to Feedforward Neural Network

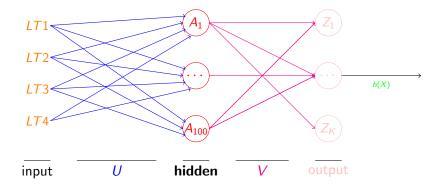
Neural network training:

Predict corresponding label (forward propagation)

 \rightarrow should be organization (ORG)

Train weights by backpropagating error

Feedforward Neural Network for NER



Input: word features LT_i Output: predicted label

Note: Bias terms omitted for simplicity

Fabienne Braune (CIS)

Feedforward Neural Network

- Input layer (X): Word features LT1, LT2, LT3, LT4
- Weight matrices U, V
- Hidden layer (*H*): $\sigma(X \cdot U + d)$
- Output layer (0): $H \cdot V + b$
- **Prediction:** h(X) = softmax(0)
 - Predicted class is the one with highest probability (given by softmax)

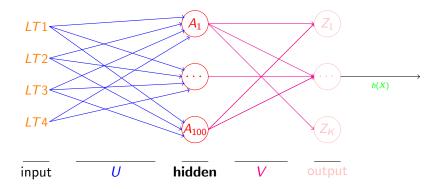
Training: Find weight matrices U and V such that h(X) is the correct answer as many times as possible.

- → Given a set T of training examples t_1, \dots, t_n with correct labels \mathbf{y}_i , find U and V such that $h(X) = \mathbf{y}_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) with forward propagation
 - \rightarrow C, U and V with error back propagation

Training data

Training example	POS	Sh-synt	Tag
U.N.	NNP	I-NP	I-ORG
official	NN	I-NP	0
Ekeus	NNP	I-NP	I-PER
heads	VBZ	I-VP	0
for	IN	I-PP	0
Baghdad	NNP	I-NP	I-LOC
		0	0

Forward Propagation



Forward propagation:

 \rightarrow Perform all operations to get h(X) from input LT.

Goal of training: adjust weights such that correct label is predicted

 \rightarrow Error between correct label and prediction is minimal

Compute error at output:

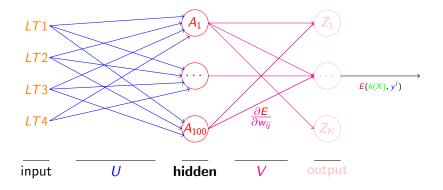
Compare output unit with y^i

yⁱ vector with 1 in correct class, 0 otherwise

$$E = rac{1}{2}\sum\limits_{i=1}^n (y_i - o_i)^2$$
 (mean squared)

Search influence of weight on error:

 $\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}$ w_{ij}: single weight in weight matrix



Backpropagation:

 \rightarrow E needs to go through output neuron.

$$\rightarrow$$
 Chain rule: $\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}$

Search influence of weight on error:

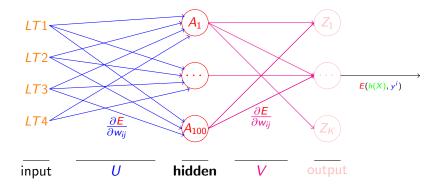
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} \frac{\partial Z_j}{\partial w_{ij}}$$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial Z_j} x_i, \text{ where } x_i \text{ is input to neuron}$$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_j} \sigma'(Z_i) x_i \text{ if output neuron}$$

$$\frac{\partial E}{\partial w_{ij}} = (O_j - y_j^i) \sigma'(Z_j) x_i \text{ if output neuron}$$

$$\delta_j x_i \text{ if output neuron}$$



Backpropagation:

Compute error for weights leading to output unit

Compute all other weights

Fabienne Braune (CIS)

Word Embeddings for Named Entity Recognition

Search influence of weight on error:

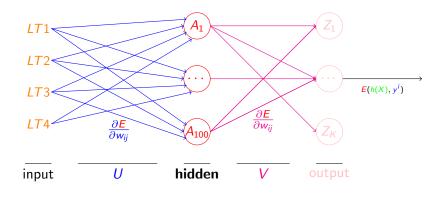
Compute error for weights leading to output unit

Compute all other weights

 $\frac{\partial \boldsymbol{E}}{\partial \boldsymbol{w}_{ij}} = \frac{\partial \boldsymbol{E}}{\partial H_j} \frac{\partial H_j}{\partial Z_j} \frac{\partial Z_j}{\partial \boldsymbol{w}_{ij}}$

\rightarrow Use **recursion**:

 $\frac{\partial \mathbf{E}}{\partial w_{ij}} = \sum_{k} \delta_k w_{jk} \sigma'(Z_i) x_i$ $\delta_k \text{ is error of preceding unit.}$



 $\frac{\partial E}{\partial w_{ij}} = \sum_{k} \delta_k w_{jk} \sigma'(Z_i) x_i$ $\delta_k \text{ is error of preceding unit.}$

Weight training

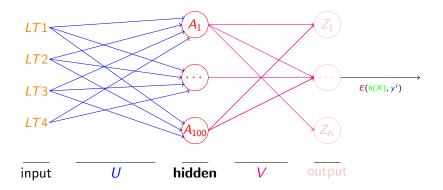
Training: Find weight matrices U and V such that h(X) is the correct answer as many times as possible.

- \rightarrow Computation of h(X) with forward propagation
- \rightarrow U and V with error back propagation

For each batch of training examples

- Forward propagation to get predictions
- 2 Backpropagation of error
 - Gives gradient of E given input
- Modify weights (gradient descent)
- Goto 1 until convergence

Lookup Layer



Lookup Layer

- Each word encoded into index vector $w_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- *LT_i* is dot product of weight matrix *C* with index of w_i
 → *C* is shared among all words

Dot product with (trained) weight vector

 $\mathcal{W} = \{\texttt{the,cat,on,table,chair}\}$

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.02 & 0.1 & 0.05 & 0.03 & 0.01\\0.15 & 0.2 & 0.01 & 0.02 & 0.11\\0.03 & 0.1 & 0.04 & 0.04 & 0.12 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot C^{T} = \begin{bmatrix} 0.03\\ 0.02\\ 0.04 \end{bmatrix}$$

Words get mapped to lower dimension \rightarrow Hyperparameter to be set

Dot product with (initial) weight vector

 $\mathcal{W} = \{\texttt{the,cat,on,table,chair}\}$

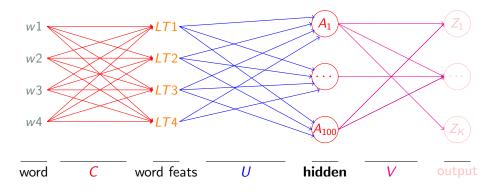
- - **-**

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.01 & 0.01 & 0.01 & 0.01 & 0.01\\0.01 & 0.01 & 0.01 & 0.01 & 0.01\\0.01 & 0.01 & 0.01 & 0.01 & 0.01 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot \boldsymbol{C}^{\boldsymbol{T}} = \begin{bmatrix} 0.01\\ 0.01\\ 0.01 \end{bmatrix}$$

Feature vectors same for all words.

Feedforward Neural Network with Lookup Table



Note: Bias terms omitted for simplicity

Training: Find weight matrices C, U and V such that h(X) is the correct answer as many times as possible.

- → Given a set T of training examples $t_1, \dots t_n$ with **correct labels y**_i, find C, U and V such that $h(X) = y_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) with forward propagation
 - \rightarrow C, U and V with error back propagation

Dot product with (trained) weight vector

 $\mathcal{W} = \{\texttt{the,cat,on,table,chair}\}$

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.02 & 0.1 & 0.05 & 0.03 & 0.01\\0.15 & 0.2 & 0.01 & 0.02 & 0.11\\0.03 & 0.1 & 0.04 & 0.04 & 0.12 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot C^{\mathsf{T}} = \begin{bmatrix} 0.03\\ 0.02\\ 0.04 \end{bmatrix}$$

Each word gets a specific feature vector

Training data

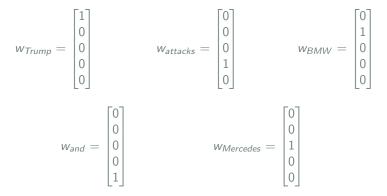
Training example	POS	Sh-synt	Tag
U.N.	NNP	I-NP	I-ORG
official	NN	I-NP	0
Ekeus	NNP	I-NP	I-PER
heads	VBZ	I-VP	0
for	IN	I-PP	0
Baghdad	NNP	I-NP	I-LOC
		0	0

• Lookup vector C trained with NER training data

Word feature vectors are trained towards NER

EXAMPLE

Trump PER attacks BMW ORG and Mercedes ORG $W = \{\text{Trump,BMW,Mercedes,attacks,and}\}$

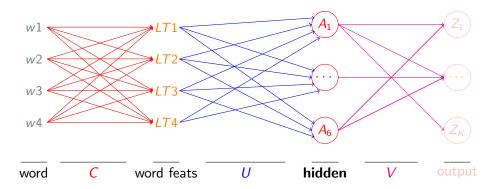


Window: Trump attacks BMW and Mercedes

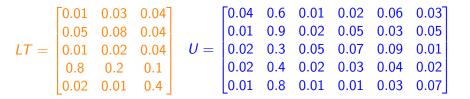
$$w_{window} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0.01 & 0.8 & 0.05 & 0.02 & 0.01 \\ 0.03 & 0.2 & 0.08 & 0.01 & 0.02 \\ 0.04 & 0.1 & 0.04 & 0.02 & 0.04 \end{bmatrix}$$

C is randomly initialized

 $LT = w_{window} \cdot C^T$



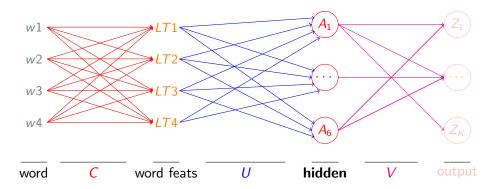
Output of lookup table given as input Note: Bias terms omitted for simplicity



U is randomly initialized

 $\mathbf{Z} = \mathbf{L}\mathbf{T}^{\mathsf{T}} \cdot \mathbf{U}^{\mathsf{T}}$

 $\overline{\mathbf{A}} = \sigma(\mathbf{Z})$



Output of lookup table given as input Note: Bias terms omitted for simplicity

- Repeat same procedure for each hidden layer
- Apply softmax on output (last) layer
- Predict label

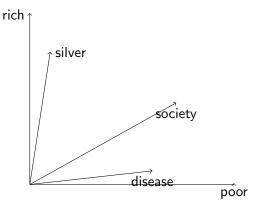
- Compute error between prediction (e.g. LOCATION) and true label \rightarrow Given in training data (BMW is ORG)
- Backpropagate error through network and adjust weights
- Redo same procedure with adjusted weights
- Stop at convergence

 \rightarrow Or early stopping on held-out dataset

Adding Pre-trained Word Embeddings

Word Embeddings

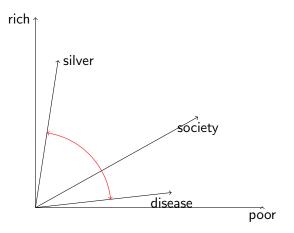
• Representation of words in vector space



Word Embeddings

• Similar words are close to each other

 \rightarrow Similarity is the cosine of the angle between two word vectors



Learning word embeddings

Count-based methods:

- Compute cooccurrence statistics
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation

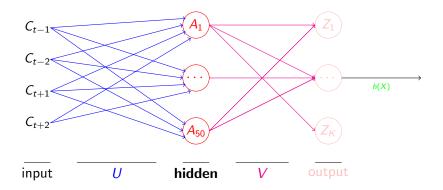
Neural networks:

- Predict a word from its neighbors
- Learn (small) embedding vectors

Word vectors with Neural Networks

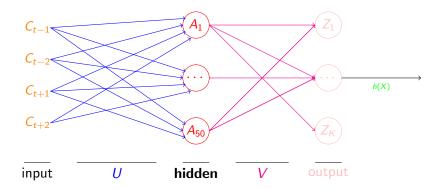
- LM Task: Given k previous words, predict the current word
 - \rightarrow For each word w in V, model $P(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n})$
 - \rightarrow Learn embeddings C of words
 - \rightarrow Input for task
- Task: Given k context words, predict the current word
 - \rightarrow Learn embeddings C of words

Network architecture



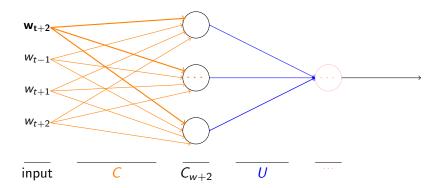
Given words w_{t-2} , w_{t-1} , w_{t+1} and w_{t+2} , predict w_t Note: Bias terms omitted for simplicity

Network architecture



We want the context vectors \rightarrow embed words in shared space Note: Bias terms omitted for simplicity

Getting the Word Embeddings



Same as lookup table but trained on a language model task (predict w_t) NER lookup table was trained on NER task (predict NE label)

Word Embeddings for NER

- Train word embeddings using language model task:
 - ightarrow Labels are words w_t
 - \rightarrow No need for NER training data
 - \rightarrow Use large amounts of non-annotated data
- Replace lookup table C (randomly initialized) with C (pre-trained)

Window: Trump attacks BMW and Mercedes

$$w_{window} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0.01 & 0.8 & 0.05 & 0.02 & 0.01 \\ 0.03 & 0.2 & 0.08 & 0.01 & 0.02 \\ 0.04 & 0.1 & 0.04 & 0.02 & 0.04 \end{bmatrix}$$

C is randomly initialized

Before NER training, word embeddings are very bad. **After** NER training, word embeddings are good for NER.

Window: Trump attacks BMW and Mercedes

_

$$w_{window} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0.01 & 0.8 & 0.05 & 0.02 & 0.01 \\ 0.03 & 0.2 & 0.08 & 0.01 & 0.02 \\ 0.04 & 0.1 & 0.04 & 0.02 & 0.04 \end{bmatrix}$$

C is **pre-trained** on LM task

Before NER training, word embeddings are good word embeddings.

NER trained word embeddings

Word embeddings trained on NER task

- (Collobert et al. 2011)
- \rightarrow Small amount of annotated data.
 - Closest words to France
 - Persuade
 - Faw
 - Blackstock
 - Closest words to XBOX
 - Decadent
 - Divo
 - Versus

NER trained word embeddings

Word embeddings trained on LM task

 \rightarrow Large amount of **non-annotated** data.

- Closest words to France
 - Austria
 - Belgium
 - Germany
- Closest words to XBOX
 - Amiga
 - Playstation
 - MSX

Results

Feedforward Neural Networks for NER (Collobert et al. 2011):

- With raw words 81.74
- With pre-trained word embeddings 88.67
- Using a gazetteer 89.59

Classifier combination with engineered features (Florian et al. 2003)

• 88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005) • 89.31 F1

Results

- Pre-trained word embeddings yield comparable results to state of the art NER systems
- To beat the best system, additional features are needed
 - Indicate if word is in Gazetteer or not

WORD2VEC

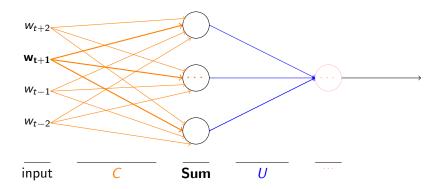
Word2Vec

- Software train word embeddings (Mikolov. 2013)
 → very fast
- Two models:
 - Skip-gram model:
 - ***** Input is w_t
 - ★ Prediction is w_{t+2} , w_{t+1} , w_{t-1} and w_{t-2}
 - BOW model:
 - ★ Input is is w_{t+2} , w_{t+1} , w_{t-1} and w_{t-2}
 - ★ Prediction is w_t

Fast computation of Word Embeddings

- Inner workings of BOW same as language model architecture
- Some components are changed to speed up computation
 - Remove hidden layer
 - Sum over all projections
 - Replace softmax by logistic unit with negative sampling

Simplifications

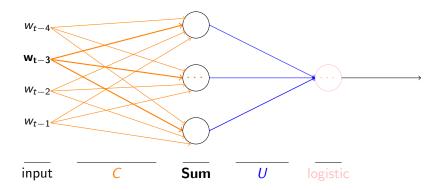


Remove hidden layer and sum over context Note: Bias terms omitted for simplicity

Simplifications

- Single logistic unit instead of output layer
 - \rightarrow No need for distribution over words (only vector representation)
 - \rightarrow Task as binary classification problem:
 - Given input and weight matrix say if w_t is current word
 - We know the correct w_t, how do we get the wrong ones? → negative sampling

Simplifications



Remove hidden layer and sum over context Note: Bias terms omitted for simplicity

Word2Vec for NER

- Quickly train word embeddings on very large amounts of non-annotated data
- Give pre-trained word embeddings as input to NER network

Recap

- Using neural networks for NER yields good results using (almost) raw representations of words
- Example feedforward neural network for NER
- Word embeddings can be learned automatically on large amounts of non-annotated data
- Giving pre-trained word embeddings as input to neural networks improve end-to-end task

Thank you !