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Named Entity Recognition
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Task

Find segments of entity mentions in input text and tag with labels.

Example inputs:

Trump attacks BMW and Mercedes

U.N. official Ekeus heads for Baghdad

Example labels (coarse grained):

persons PER

locations LOC

organizations ORG

names NAME

other MISC
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Labeled data

Desired outputs:

Trump PER attacks BMW ORG and Mercedes ORG

U.N. ORG official Ekeus PER heads for Baghdad LOC

Example annotations (CoNLL-2003):

Surface POS Sh-synt Tag

U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O
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Classification-based approaches

Given input segment, train classifier to tell:

Is this segment a Named Entity ?

Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes

Is Trump a named entity ?

Yes, it is a person (PER)
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Classification-based approaches

Classifier combination with engineered features (Florian et al. 2003)
I Manually engineer features
I Use large (external) gazetteer
I Combine classifiers (ME, MRR, HMM) trained on annotated data
I 88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005)
I Train linear model on annotated data
I Add non-annotated data
I 89.31 F1
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Classification-based approaches

Use feedforward neural networks (Collobert et al. 2011):
I With raw words 81.74
I With pre-trained word embeddings 88.67
I Using a gazetteer 89.59

Use sequential models:
I Linear Chain CRF (linear)
I LSTM networks (deep)
→ Achieve best performance but not covered here
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Feedforward Neural Networks: Recap
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Motivation

x1

x2

Cannot be solved using a linear model
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Motivation

a b a XNOR b
0 0 1
0 1 0
1 0 0
1 1 1 a

b

1

0

0

1

Features : a, b Feature values : binary

Cannot be solved using a linear model
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Motivation

Linear models not suited to learn non-linear decision boundaries.

Neural networks can do that

→ Through composition of non-linear functions
→ Learn relevant features from (almost) raw text

→ No need for manual feature engineering

→ learned by network
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Feedforward Neural Network

x0

x1

x2

B0

−10

A1

20

A2

20

Z3
h(X )

−30

20

20

10

−20

−20

input hidden output

Computation of hidden layer H:

A1 = σ(X ·Θ1)

A2 = σ(X ·Θ2)

B0 = 1 (bias term)

Computation of output unit h(X):

h(X ) = σ(H ·Θ3)
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Feedforward Neural Network

Feedforward neural network with:

1 input layer X (feature vector)

2 weight matrices U = (Θ1, Θ2) and V = Θ3

1 hidden layer H composed of:

I 2 activations A1 = σ(Z1) and A2 = σ(Z2) where:
F Z1 = X · Θ1

F Z2 = X · Θ2

1 output unit h(X ) = σ(Z3) where:
I Z3 = H ·Θ3
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Non-linear activation function

The sigmoid function σ(Z ) is often used

h(x)

1
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Feedforward neural network

Trump attacks BMW and Mercedes

Binray NER task: Is the segment from position 1 to 2 a Named Entity?

Neural network: h(X ) = σ(H ·Θn), with:

H =


B0 = 1

A1 = σ(X ·Θ1)
A2 = σ(X ·Θ2)

· · ·
Aj = σ(X ·Θj)



Prediction: If h(X ) > 0.5, yes. Otherwise, no.
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Feedforward Neural Network

x0

x1

x2

B0

−10

A1

20

A2

20

Z3
h(X )

−30

20

20

10

−20

−20

input hidden output

If weights are all random output will be random

→ Predictions will be bad

→ Get the right weights
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Getting the right weights

Training: Find weight matrices U = (Θ1, Θ2) and V = Θ3 such that h(X )
is the correct answer as many times as possible.

→ Given a set T of training examples t1, · · · tn with correct labels yi,
find U = (Θ1, Θ2) and V = Θ3 such that h(X ) = yi for as many ti
as possible.

→ Computation of h(X ) called forward propagation

→ U = (Θ1, Θ2) and V = Θ3 with error back propagation
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Multi-class classification

More than two labels

Instead of “yes” and “no”, predict ci ∈ C = {c1, · · · , ck}
NER: Is this segment a location, name, person ...

Use k output units, where k is number of classes
I Output layer instead of unit
I Use softmax to obtain value between 0 and 1 for each class
I Highest value is right class
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Neural Networks for NER
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Classification-based NER

Given input segment, train classifier to tell:

Is this segment a Named Entity ?

Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes

Is Trump a named entity ?

Yes, it is a person (PER)
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Labeled data

Desired outputs:

Trump PER attacks BMW ORG and Mercedes ORG

U.N. ORG official Ekeus PER heads for Baghdad LOC

Annotation:

Surface POS Sh-synt Tag

U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O
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Feedforward Neural Network for NER

Training example: Trump attacks BMW (ORG) and Mercedes

Neural network input:

Look at word window around BMW

→ Trump−2 attacks−1 BMW and1 Mercedes2

→ Lookup feature representation (LTi ) for window

Give LTi as input to Feedforward Neural Network

Neural network training:

Predict corresponding label (forward propagation)

→ should be organization (ORG)

Train weights by backpropagating error
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Feedforward Neural Network for NER

LT 1

LT 2

LT 3

LT 4

A1

· · ·

A100

Z1

· · ·

ZK

h(X )

input U hidden V output

Input: word features LTi

Output: predicted label

Note: Bias terms omitted for simplicity
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Feedforward Neural Network

Input layer (X ): Word features LT1, LT2, LT3, LT4

Weight matrices U, V

Hidden layer (H): σ(X · U + d)

Output layer (0): H · V + b

Prediction: h(X ) = softmax(0)

Predicted class is the one with highest probability (given by softmax)
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Weight training

Training: Find weight matrices U and V such that h(X ) is the correct
answer as many times as possible.

→ Given a set T of training examples t1, · · · tn with correct labels yi,
find U and V such that h(X ) = yi for as many ti as possible.

→ Computation of h(X ) with forward propagation

→ C , U and V with error back propagation
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Training data

Training example POS Sh-synt Tag

U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O
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Weight training

Training: Find weight matrices U and V such that h(X ) is the correct
answer as many times as possible.

→ Computation of h(X ) with forward propagation

→ U and V with error back propagation

For each batch of training examples

1 Forward propagation to get predictions
2 Backpropagation of error

I Gives gradient of E wrt. weights

3 Modify weights (gradient descent)

4 Goto 1 until convergence
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Lookup Layer

LT 1

LT 2

LT 3

LT 4

A1

· · ·

A100

Z1

· · ·

ZK

E(h(X ), y i )

input U hidden V output
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Lookup Layer

Each word encoded into index vector wi =


0
1
0
0
0


LTi is dot product of weight matrix C with index of wi

→ C is shared among all words
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Dot product with (trained) weight vector

W = {the,cat,on,table,chair}

wtable =


0
0
0
1
0

 C =

0.02 0.1 0.05 0.03 0.01
0.15 0.2 0.01 0.02 0.11
0.03 0.1 0.04 0.04 0.12



LTtable = wtable · CT =

0.03
0.02
0.04


Words get mapped to lower dimension
→ Hyperparameter to be set
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Dot product with (initial) weight vector

W = {the,cat,on,table,chair}

wtable =


0
0
0
1
0

 C =

0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01



LTtable = wtable · CT =

0.01
0.01
0.01


Feature vectors same for all words.
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Feedforward Neural Network with Lookup Table

w1

w2

w3

w4

LT 1

LT 2

LT 3

LT 4

A1

· · ·

A100

Z1

· · ·

ZK

word C word feats U hidden V output

Note: Bias terms omitted for simplicity
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Dot product with (trained) weight vector

W = {the,cat,on,table,chair}

wtable =


0
0
0
1
0

 C =

0.02 0.1 0.05 0.03 0.01
0.15 0.2 0.01 0.02 0.11
0.03 0.1 0.04 0.04 0.12



LTtable = wtable · CT =

0.03
0.02
0.04


Each word gets a specific feature vector
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Training data

Training example POS Sh-synt Tag

U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O

Lookup vector C trained with NER training data

Word feature vectors are trained towards NER
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Example
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Example

Trump PER attacks BMW ORG and Mercedes ORG

W = {Trump,BMW,Mercedes,attacks,and}

wTrump =


1
0
0
0
0

 wattacks =


0
0
0
1
0

 wBMW =


0
1
0
0
0



wand =


0
0
0
0
1

 wMercedes =


0
0
1
0
0
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Example

Window: Trump attacks BMW and Mercedes

wwindow =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

 C =

0.01 0.8 0.05 0.02 0.01
0.03 0.2 0.08 0.01 0.02
0.04 0.1 0.04 0.02 0.04



C is randomly initialized

LT = wwindow · CT
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Example

w1

w2

w3

w4

LT 1

LT 2

LT 3

LT 4

A1

· · ·

A6

Z1

· · ·

ZK

word C word feats U hidden V output

Output of lookup table given as input
Note: Bias terms omitted for simplicity
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Example

LT =


0.01 0.03 0.04
0.05 0.08 0.04
0.01 0.02 0.04
0.8 0.2 0.1

0.02 0.01 0.4

 U =


0.04 0.6 0.01 0.02 0.06 0.03
0.01 0.9 0.02 0.05 0.03 0.05
0.02 0.3 0.05 0.07 0.09 0.01
0.02 0.4 0.02 0.03 0.04 0.02
0.01 0.8 0.01 0.01 0.03 0.07


U is randomly initialized

Z = LTT · UT

A = σ(Z)
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Example

w1

w2

w3

w4

LT 1

LT 2

LT 3

LT 4

A1

· · ·

A6

Z1

· · ·

ZK

word C word feats U hidden V output

Output of lookup table given as input
Note: Bias terms omitted for simplicity
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Example

Repeat same procedure for each hidden layer

Apply softmax on output (last) layer

Predict label
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Example

Compute error between prediction (e.g. LOCATION) and true label

→ Given in training data (BMW is ORG)

Backpropagate error through network and adjust weights

Redo same procedure with adjusted weights

Stop at convergence

→ Or early stopping on held-out dataset
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Adding Pre-trained Word Embeddings
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Word Embeddings

Representation of words in vector space

poor

rich

silver

disease

society
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Word Embeddings

Similar words are close to each other

→ Similarity is the cosine of the angle between two word vectors

poor

rich

silver

disease

society
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Learning word embeddings

Count-based methods:

Compute cooccurrence statistics

Learn high-dimensional representation

Map sparse high-dimensional vectors to small dense representation

Neural networks:

Predict a word from its neighbors

Learn (small) embedding vectors
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Word vectors with Neural Networks

LM Task: Given k previous words, predict the current word

→ For each word w in V , model P(wt |wt−1,wt−2, ...,wt−n)

→ Learn embeddings C of words

→ Input for task

Task: Given k context words, predict the current word

→ Learn embeddings C of words
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Network architecture

Ct−1

Ct−2

Ct+1

Ct+2

A1

· · ·

A50

Z1

· · ·

ZK

h(X )

input U hidden V output

Given words wt−2, wt−1, wt+1 and wt+2, predict wt

Note: Bias terms omitted for simplicity
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Network architecture

Ct−1

Ct−2

Ct+1

Ct+2

A1

· · ·

A50

Z1

· · ·

ZK

h(X )

input U hidden V output

We want the context vectors → embed words in shared space
Note: Bias terms omitted for simplicity
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Getting the Word Embeddings

wt+2

wt−1

wt+1

wt+2

· · · · · ·

input C Cw+2 U
...

Same as lookup table but trained on a language model task (predict wt)

NER lookup table was trained on NER task (predict NE label)
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Word Embeddings for NER

Train word embeddings using language model task:

→ Labels are words wt

→ No need for NER training data
→ Use large amounts of non-annotated data

Replace lookup table C (randomly initialized) with C (pre-trained)
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Example

Window: Trump attacks BMW and Mercedes

wwindow =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

 C =

0.01 0.8 0.05 0.02 0.01
0.03 0.2 0.08 0.01 0.02
0.04 0.1 0.04 0.02 0.04



C is randomly initialized

Before NER training, word embeddings are very bad.
After NER training, word embeddings are good for NER.
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Example

Window: Trump attacks BMW and Mercedes

wwindow =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

 C =

0.01 0.8 0.05 0.02 0.01
0.03 0.2 0.08 0.01 0.02
0.04 0.1 0.04 0.02 0.04



C is pre-trained on LM task

Before NER training, word embeddings are good word embeddings.
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NER trained word embeddings

Word embeddings trained on NER task

(Collobert et al. 2011)

→ Small amount of annotated data.

Closest words to France
I Persuade
I Faw
I Blackstock

Closest words to XBOX
I Decadent
I Divo
I Versus

Fabienne Braune (CIS) Word Embeddings for Named Entity Recognition December 13th, 2017 · 55



NER trained word embeddings

Word embeddings trained on LM task
→ Large amount of non-annotated data.

Closest words to France
I Austria
I Belgium
I Germany

Closest words to XBOX
I Amiga
I Playstation
I MSX
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Results

Feedforward Neural Networks for NER (Collobert et al. 2011):

With raw words 81.74

With pre-trained word embeddings 88.67

Using a gazetteer 89.59

Classifier combination with engineered features (Florian et al. 2003)

88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005)

89.31 F1
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Results

Pre-trained word embeddings yield comparable results to state of the
art NER systems

To beat the best system, additional features are needed
I Indicate if word is in Gazetteer or not
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Word Embeddings
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Word Embeddings

Similar words are close to each other

→ Similarity is the cosine of the angle between two word vectors

poor

rich

silver

disease

society
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Learning word embeddings

Count-based methods:

Compute cooccurrence statistics

Learn high-dimensional representation

Map sparse high-dimensional vectors to small dense representation

Neural networks:

Predict a word from its neighbors

Learn (small) embedding vectors
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Word2Vec

Software train word embeddings (Mikolov. 2013)

→ very fast

Two models:
I BOW model:

F Input is is wt+2, wt+1, wt−1 and wt−2

F Prediction is wt

I Skip-gram model:
F Input is wt

F Prediction is wt+2, wt+1, wt−1 and wt−2
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Learning word embeddings with CBOW

w−2

w−1

w+1

w+2

LT−2

LT−1

LT+1

LT+2

∑
Z

word C word feats U wt

Note: Bias terms omitted for simplicity
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Learning word embeddings with skip-gram

o−2

o−1

o+1

o+2

Lt wt

wti U word feats C word

Note: Bias terms omitted for simplicity
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Bilingual Word Embeddings
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Bilingual Word Spaces

Representation of words in two languages in same semantic space:

→ Each word is one dimension

→ Each word represented respective to all others

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
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Bilingual Word Spaces

Representation of words in two languages in same semantic space:

→ Similar words are close to each other

→ Given by cosine

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
α
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Exercise

How is this related to translation?
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Learning Bilingual Word Embeddings

Learn monolingual word embeddings and map using seed lexicon

Mikolov et al. (2013); Faruqui and Dyer (2014); Lazaridou et al. (2015)
Need seed lexicon

Learn bilingual embeddings or lexicon from document-aligned data

Vulic and Moens (2015); Vulic and Korhonen (2016)
Need document-aligned data

Learn bilingual embeddings from parallel data

Hermann and Blunsom (2014), Gouws et al. (2015), Gouws and
Søgaard (2015), Duong et al. (2016)
Need for parallel data
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Post-hoc mapping (with seed lexicon)

Learn monolingual word embeddings

Learn a linear mapping W

poor

rich

silver

disease

W

Silber

Reich

Gesellschaft

Krankheit
Arm
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Post-hoc mapping

Project source words into target space

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
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Post-hoc Mapping with seed lexicon

1 Train monolingual word embeddings (Word2vec) in English
I Need English monolingual data

2 Train monolingual word embeddings (Word2vec) in German
I Need German monolingual data

3 Learn mapping W using a seed lexicon
I Need a list of 5000 English words and their translation
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Learning W with Ridge Regression

Ridge regression (Mikolov et al. (2013))

W∗ = arg min
W

n∑
i

|| xiW− yi ||2

xi : embedding of i-th source (English) word in the seed lexicon.

yi : embedding of i-th target (German) word in the seed lexicon.
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Learning W with Ridge Regression

xi : embedding of i-th source (English) word in the seed lexicon.

→ vector representing silver in monolingual word embedding

poor

rich

silver

disease

society

α
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Learning W with Ridge Regression

Ridge regression (Mikolov et al. (2013))

W∗ = arg min
W

n∑
i

|| xiW− yi ||2

xi : embedding of i-th source (English) word in the seed lexicon.

yi : embedding of i-th target (German) word in the seed lexicon.
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Learning W with Ridge Regression

yi : embedding of i-th target (German) word in the seed lexicon.

→ vector representing Silber in monolingual word embedding

Silber

Reich

Gesellschaft

Krankheit
Arm

α
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Learning W with Ridge Regression

Ridge regression (Mikolov et al. (2013))

W∗ = arg min
W

n∑
i

|| xi ·W− yi ||2

Predict projection y* by computing xi ·W

Compute squared error between y* and yi
I Correct translation ti given in seed lexicon
I Vector representation yi is given by embedding of ti

Find W such that squared error over training set is minimal
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Adding Regularization

If W is too complex the model overfits the data
→ Add regularization term that keeps W small
→ Add weighted norm of W to cost function

W∗ = arg min
W

n∑
i

|| xi ·W− yi ||2 +λ ||W ||
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Bilingual lexicon induction

Task to evaluate bilingual word embeddings extrinsically

Given a set of source words, find the corresponding translations:
I Given silver, find its vector in the BWE
I Retrieve the German word whose vector is closest (cosine distance)

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
α
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Bilingual lexicon induction with ridge regression

Data: WMT 2011 training data for English, Spanish, Czech
Seed: 5000 most frequent words translated with Google Translate
Test: 1000 next frequent words translated with Google Translate

→ Removed digits, punctuation and transliterations

Languages top-1 top-5

En-Es 33 % 51 %
Es-En 35 % 50 %
En-Cz 27 % 47 %
Cz-En 23 % 42 %

+ Es-En 53 % 80 %

→ with spanish google news

Fabienne Braune (CIS) Word Embeddings for Named Entity Recognition December 13th, 2017 · 80



Recap

Using neural networks for NER yields good results using (almost) raw
representations of words

Example feedforward neural network for NER

Word embeddings can be learned automatically on large amounts of
non-annotated data

Giving pre-trained word embeddings as input to neural networks
improve end-to-end task
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