Neural Networks for Named Entity Recognition

Viktor Hangya (slides originally by Dr. Fabienne Braune)

CIS, LMU Munich

WS 2021-2022

Outline

- Named Entity Recognition
- Feedforward Neural Networks: recap
- Neural Networks for Named Entity Recognition
- Adding Pre-trained Word Embeddings
- Sequentiality in NER
- Bilingual Word Embeddings

NAMED ENTITY RECOGNITION

Task

Find segments of entity mentions in input text and tag with labels.

Example inputs:

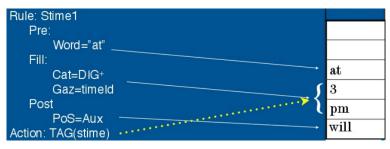
- Trump attacks BMW and Mercedes
- U.N. official Ekeus heads for Baghdad

Example labels (coarse grained):

- persons PER
- locations LOC
- organizations ORG
- names NAME
- other MISC

Rule-based approaches

- A collection of rules to detect entities
- Interpretable
- High precision vs. low recall
- Time consuming to build and domain knowledge is needed



(Fabio Ciravegna, University of Sheffield)

Classification-based approaches

Given input segment, train classifier to tell:

- Is this segment a Named Entity?
- Give the corresponding Tag

Classification task:

```
Trump attacks BMW and Mercedes
Is Trump a named entity?
Yes, it is a person (PER)
```

Desired outputs:

- Trump PER attacks BMW ORG and Mercedes ORG
- U.N. ORG official Ekeus PER heads for Baghdad LOC

Labeled data

Example annotations (CoNLL-2003):

Surface	Tag
United	B-ORG
Nations	I-ORG
official	0
Ekeus	B-PER
heads	0
for	0
Baghdad	B-LOC
	0

Scheme	Begin	Inside	End	Single	Other
IOB	B-X	I-X	I-X	B-X	О
IOE	I-X	I-X	E-X	E-X	О
IOBES	B-X	I-X	E-X	S-X	О
			'		

(Collobert et al., 2011)

Classification-based approaches

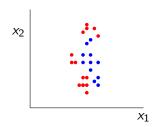
- Classifier combination with engineered features (Florian et al., 2003)
 - Manually engineer features
 - * words
 - ⋆ POS tags
 - ★ prefixes and suffixes
 - ★ large (external) gazetteer
 - ▶ 88.76 F1

Classification-based approaches

- Differences to rule-based:
 - Feature sets vs. rules
 - Less domain knowledge is needed
 - Faster to adapt systems
 - Annotated data is needed
- Next: neural networks
 - even less manual work

FEEDFORWARD NEURAL NETWORKS: RECAP

Motivation



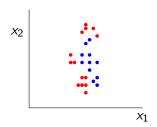
Linear models not suited to learn non-linear decision boundaries.

- ... does not start at 3pm STIME ...
 - ▶ unigrams: at, not, start, 3pm...
 - \blacktriangleright

Neural networks can do that

- → Through composition of non-linear functions
- → Learn relevant features from (almost) raw text
 - ightarrow No need for manual feature engineering
 - \rightarrow learned by network

Motivation



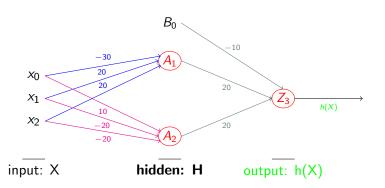
Linear models not suited to learn non-linear decision boundaries.

- ... does not start at 3pm STIME ...
 - unigrams: at, not, start, 3pm...
 - manual negation detection: NEGATED_start

Neural networks can do that

- → Through composition of non-linear functions
- → Learn relevant features from (almost) raw text
 - \rightarrow No need for manual feature engineering
 - → learned by network

Feedforward Neural Network



Computation of hidden layer H:

•
$$A_1 = \sigma(X \cdot \Theta_1)$$

$$A_2 = \sigma(X \cdot \Theta_2)$$

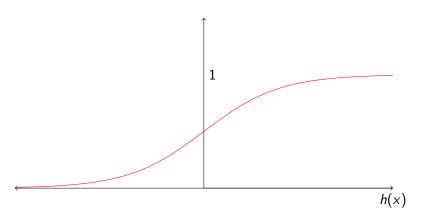
•
$$B_0 = 1$$
 (bias term)

Computation of output unit h(X):

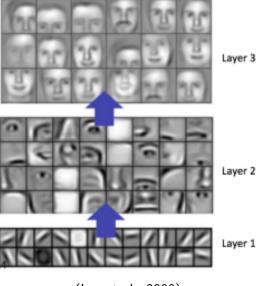
•
$$h(X) = \sigma(\mathbf{H} \cdot \Theta_3)$$

Non-linear activation function

The **sigmoid function** $\sigma(Z)$ is often used



Learning features from raw input



(Lee et al., 2009)

Feedforward neural network

Trump attacks BMW and Mercedes

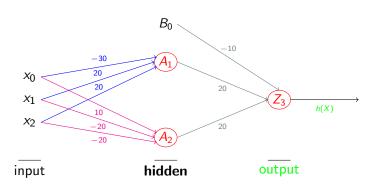
Binray NER task: Is the segment from position 1 to 2 a Named Entity?

Neural network: $h(X) = \sigma(\mathbf{H} \cdot \Theta_n)$, with:

$$\mathbf{H} = egin{bmatrix} B_0 = 1 \ A_1 = \sigma(X \cdot \Theta_1) \ A_2 = \sigma(X \cdot \Theta_2) \ & \ddots \ A_j = \sigma(X \cdot \Theta_j) \end{bmatrix}$$

Prediction: If h(X) > 0.5, yes. Otherwise, no.

Feedforward Neural Network



If weights are all random output will be random

- → Predictions will be bad
- → Get the right weights

Getting the right weights

Training: Find weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that h(X) is the **correct answer** as many times as possible.

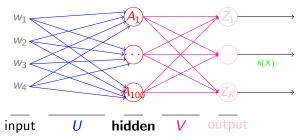
- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with **correct labels y**_i, find $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that $h(X) = \mathbf{y_i}$ for as many t_i as possible.
 - \rightarrow Computation of h(X) called forward propagation
 - $\rightarrow U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ with error back propagation

Multi-class classification

- More than two labels
- Instead of "yes" and "no", predict $c_i \in C = \{c_1, \dots, c_k\}$
- NER: Is this segment a location, name, person ...
- Use k output units, where k is number of classes
 - ► h(X): output layer instead of unit
 - Use softmax to obtain probability values:

$$softmax(h(X))_i = \frac{e^{h(X)_i}}{\sum_i e^{h(X)_j}}$$

► Highest value is right class



NEURAL NETWORKS FOR NER

Feedforward Neural Network for NER

Example: Trump attacks BMW (ORG) and Mercedes

Neural network input:

Look at word window around BMW

- $\rightarrow \text{Trump}_{-2} \text{ attacks}_{-1} \text{ BMW and}_{1} \text{ Mercedes}_{2}$
- \rightarrow each word w_i is represented as one-hot vector
- $\rightarrow w_i = [0, 1, 0, 0, ..., 0]$

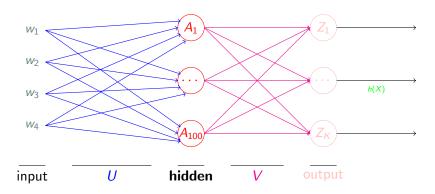
Neural network training:

Predict corresponding label (forward propagation)

→ should be organization (ORG)

Train weights by backpropagating error

Feedforward Neural Network for NER



- Input: one-hot word representations w_i
- Hidden layer: learns to detect higher level features
 - ▶ e.g.: at ... pm
- Output: predicted label

Weight training

Training: Find weight matrices U and V such that h(X) is the **correct** answer as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with **correct labels y**_i, find U and V such that $h(X) = y_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) with forward propagation
 - $\rightarrow U$ and V with error back propagation

Backpropagation

Goal of training: adjust weights such that correct label is predicted

→ Error between correct label and prediction is minimal

Compute error at output:

Compare

• output:
$$h(x^i) = [0.01, 0.1, 0.001, 0.95, ..., 0.01]$$

▶ output:
$$h(x^i) = \begin{bmatrix} 0.01, 0.1, 0.001, 0.95, ..., 0.01 \end{bmatrix}$$
▶ correct label: $y^i = \begin{bmatrix} 0, & 0, & 1, & 0, & ..., & 0 \end{bmatrix}$

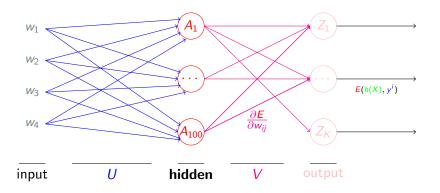
$$E = \frac{1}{2} \sum_{j=1}^{n} (y_j^i - h(x^i)_j)^2 \text{ (mean squared)}$$

Search influence of weight on error:

$$\frac{\partial E}{\partial w_{ii}}$$

wii: single weight in weight matrix

Backpropagation



Backpropagation:

- \rightarrow E needs to go through output neuron.
- \rightarrow Chain rule: $\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial O_i} \frac{\partial O_j}{\partial Z_i} \frac{\partial Z_j}{\partial w_{ij}}$

Weight training

Gradient descent: for each batch of training examples

- Forward propagation to get predictions
- Backpropagation of error
 - ► Gives gradient of E given input
- Modify weights
- Goto 1 until convergence

Outcome

- Hidden layer is able to learn higher level features of words
- Not enough to get good performance
- A simple index does not carry much information about a given word
 - $w_{BMW} = [1, 0, 0, 0, ..., 0]$
 - $w_{Mercedes} = [0, 1, 0, 0, ..., 0]$
 - $w_{happiness} = [0, 0, 1, 0, ..., 0]$
- This would be better
 - $w_{BMW} = [1, 0, 0, 0, ..., 0]$
 - $w_{Mercedes} = [1, 0, 0, 0, ..., 0]$
 - $w_{happiness} = [0, 0, 1, 0, ..., 0]$

Lookup (Embedding) Layer

- Learn features for words as well
- Similar words have similar features
- Lookup table layer:
 - embeds each one-hot encoded word w_i
 - ▶ to a feature vector LT_i

$$\mathbf{w}_{Mercedes} = [0.5, 0.0, 0.5, 0.0, ..., 0.0]$$

Dot product with (trained) weight vector

 $W = \{ \mathsf{the}, \mathsf{cat}, \mathsf{on}, \mathsf{table}, \mathsf{chair} \}$

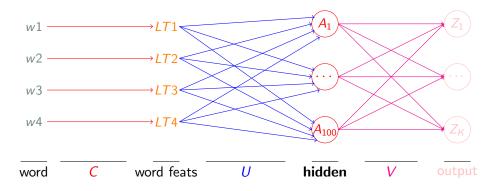
$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.02 & 0.1 & 0.05 & 0.03 & 0.01\\0.15 & 0.2 & 0.01 & 0.02 & 0.11\\0.03 & 0.1 & 0.04 & 0.04 & 0.12 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot C^T = \begin{bmatrix} 0.03\\ 0.02\\ 0.04 \end{bmatrix}$$

Words get mapped to lower dimension

 \rightarrow Hyperparameter to be set

Feedforward Neural Network with Lookup Table



C is shared!

Dot product with (initial) weight vector

 $W = \{ \text{the,cat,on,table,chair} \}$

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.01 & 0.01 & 0.01 & 0.01 & 0.01\\0.01 & 0.01 & 0.01 & 0.01 & 0.01\\0.01 & 0.01 & 0.01 & 0.01 & 0.01 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot C^{\mathsf{T}} = \begin{bmatrix} 0.01\\ 0.01\\ 0.01 \end{bmatrix}$$

Feature vectors same for all words.

Weight training

Training: Find weight matrices C, U and V such that h(X) is the **correct** answer as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with **correct labels y**_i, find C, U and V such that $h(X) = \mathbf{y}_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) with forward propagation
 - \rightarrow C, U and V with error back propagation
- → Lookup matrix C trained with NER training data
- → Word feature vectors are trained towards NER

Results

Classifier combination with engineered features (Florian et al. 2003)

• 88.76 F1

Feedforward Neural Networks for NER (Collobert et al., 2011):

• With raw words 81.74 F1

NER trained word embeddings

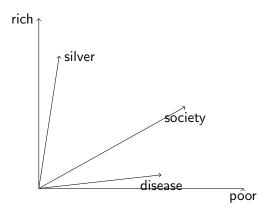
Word embeddings trained on NER task

- Closest words to France
 - Persuade
 - Faw
 - Blackstock
- Closest words to XBOX
 - Decadent
 - Divo
 - Versus
- → Small amount of annotated data.

Adding Pre-trained Word Embeddings

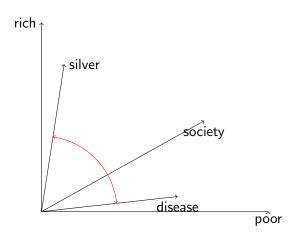
Word Embeddings

• Representation of words in vector space



Word Embeddings

- Similar words are close to each other
 - → Similarity is the cosine of the angle between two word vectors



Learning word embeddings

BMW makes the best cars ↔ Mercedes makes the best cars

Count-based methods:

Compute cooccurrence statistics

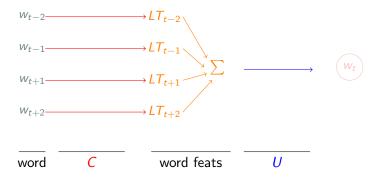
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation
- Matrix factorization approaches: SVD

Neural networks:

- Predict a word from its neighbors
- Learn (small) embedding vectors
- Word2Vec: CBOW and skipgram Mikolov et al. (2013)
- Language Modeling Task
- ELMo, BERT Peters et al. (2018); Devlin et al. (2018)

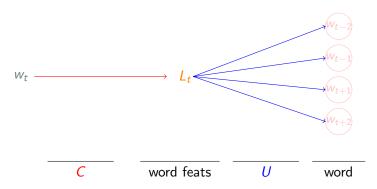
Learning word embeddings with CBOW

Training example: Trump attacks BMW and Mercedes



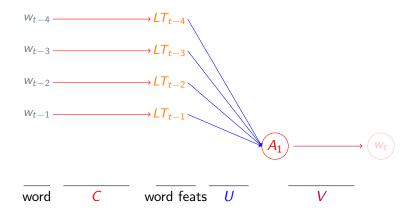
Learning word embeddings with skip-gram

Training example: Trump attacks BMW and Mercedes



Learning word embeddings with Language Modeling

Training example: Trump attacks BMW and Mercedes



Word Embeddings for NER

- Train word embeddings in advance:
 - \rightarrow Use large amounts of non-annotated data
 - ightarrow No need for NER training data
 - \rightarrow Labels are words w_t
- Replace lookup table C (randomly initialized) with C (pre-trained)

NER trained word embeddings

Word embeddings trained on NER task

- (Collobert et al. 2011)
- → Small amount of annotated data.
 - Closest words to France
 - Persuade
 - Faw
 - Blackstock
 - Closest words to XBOX
 - Decadent
 - Divo
 - Versus

NER trained word embeddings

Pre-trained word embeddings trained

- \rightarrow Large amount of **non-annotated** data.
 - Closest words to France
 - Austria
 - Belgium
 - Germany
 - Closest words to XBOX
 - Amiga
 - Playstation
 - MSX

Results

Classifier combination with engineered features (Florian et al. 2003)

• 88.76 F1

Feedforward Neural Networks for NER (Collobert et al. 2011):

- With raw words 81.74
- With pre-trained word embeddings 88.67
- Using a gazetteer 89.59

Results

- Pre-trained word embeddings yield significant improvements
- Word features:

```
\begin{array}{ll} \blacktriangleright & w_{BMW} &= \begin{bmatrix} 0.5, 0.5, 0.0, 0.0, ..., 0.0 \end{bmatrix} \\ \blacktriangleright & w_{Mercedes} &= \begin{bmatrix} 0.5, 0.0, 0.5, 0.0, ..., 0.0 \end{bmatrix} \\ \blacktriangleright & w_{happiness} &= \begin{bmatrix} 0.0, 0.0, 0.0, 1.0, ..., 0.0 \end{bmatrix} \end{array}
```

- It also helps the problem of unseen words
- Hidden layer is able to learn higher level features of words
 - Cars are produced at BMW
- The power is in exploiting large unlabeled data
- instead of relying only on small labeled data

SEQUENCE TAGGING WITH RNNs AND CRFs

NER as sequence tagging

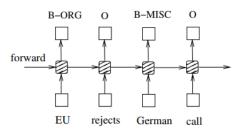
- Sequential input
 - Classification approaches (linear or NN) looked at a window around the input word
 - Limitation of window size
 - ★ too small → loosing information
 - \star too large \rightarrow noise or data scarcity

Let's have a party at JFK

- Read words sequentially and keep relevant information only
- Sequence of tags
 - IOB format: beginning and inside tags
 - Some tags shouldn't follow each other
 - Output labels sequentially word-by-word

The seminar starts tomorrow 4pm

Recurrent Neural Network (RNN)



(Huang et al., 2015)

- Reads the input sequentially
- At time step t:

►
$$h_t = f(h_{t-1}, x_t; \theta_1)$$

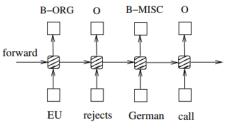
★ e.g. $h_t = \sigma(h_{t-1} * U + x_t * V)$

► $o_t = g(h_t; \theta_2)$

★ e.g. $o_t = \sigma(h_t * W)$

- Parameters are shared for each time step
- Multiple variations: LSTM, GRU, etc.

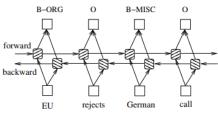
RNNs for NER



(Huang et al., 2015)

- Input: words
- Lookup layer
 - learn embeddings from scratch
 - or used pre-trained embeddings
- Probabilities of each NER tag

Bidirectional RNNs

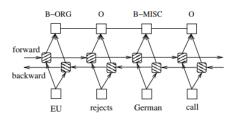


(Huang et al., 2015)

JFK was the 35th US president JFK is in New York City

- Read the input both from left-to-right and right-to-left
- Concatenate the hidden states to get the output

Conditional Random Fields (CRF)



(Huang et al., 2015)

- ullet Tag at time step t should be dependent on the RNN output at t and the tag at t-1 as well
- CRF adds (soft) constrains on the final predicted tags ensuring they are valid given previous tags
 - ▶ Transition matrix $T_{i,j}$: probability of tag j given that previous tag was i

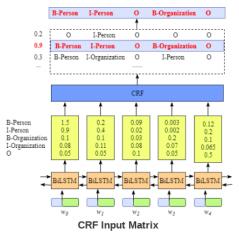
CRF transition matrix

From \ To	0	B-LOC	I-LOC	B-MISC	I-MISC	B-ORG	I-ORG	B-PER
0	3.281	2.204	0.0	2.101	0.0	3.468	0.0	2.325
B-LOC	-0.259	-0.098	4.058	0.0	0.0	0.0	0.0	-0.212
I-LOC	-0.173	-0.609	3.436	0.0	0.0	0.0	0.0	0.0
B-MISC	-0.673	-0.341	0.0	0.0	4.069	-0.308	0.0	-0.331
I-MISC	-0.803	-0.998	0.0	-0.519	4.977	-0.817	0.0	-0.611
B-ORG	-0.096	-0.242	0.0	-0.57	0.0	-1.012	4.739	-0.306
I-ORG	-0.339	-1.758	0.0	-0.841	0.0	-1.382	5.062	-0.472
B-PER	-0.4	-0.851	0.0	0.0	0.0	-1.013	0.0	-0.937
I-PER	-0.676	-0.47	0.0	0.0	0.0	0.0	0.0	-0.659

CRF State Transition Matrix

(Image taken from https://eli5.readthedocs.io sklearn tutorial)

RNN + CRF for NER



(Image taken from https://createmomo.github.io/)

 Prediction: tag sequence probability is calculated using RNN and transition probabilities (Viterbi algorithm)

Results

Classifier combination with engineered features (Florian et al. 2003)

• 88.76 F1

Feedforward Neural Networks for NER (Collobert et al. 2011):

- With raw words 81.74
- With pre-trained word embeddings 88.67
- Using a gazetteer 89.59

BI-LSTM-CRF

• 90.10

BILINGUAL WORD EMBEDDINGS

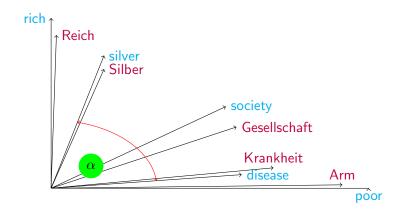
Bilingual transfer learning

- For many low-resource languages we do not have enough training data for NER
- Use knowledge from resource rich langauages
- Translate data to the target language
 - Training data is needed for the translation system
- Target language words are unseen words for a system trained on the source language
 - lacktriangleright similarity of source and target words ightarrow bilingual word embeddings

Bilingual Word Spaces

Representation of words in two languages in same semantic space:

- → Similar words are close to each other
- → Given by cosine

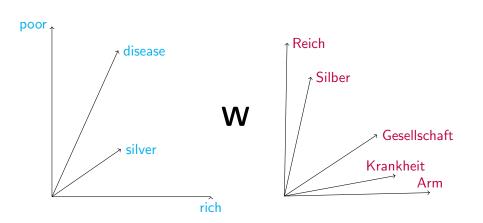


Learning Bilingual Word Embeddings

- Learn bilingual embeddings from parallel sentences
 Hermann and Blunsom (2014), Gouws et al. (2015), Gouws and
 Søgaard (2015), Duong et al. (2016)
 Need for parallel sentences
- Learn bilingual embeddings from aligned documents
 Vulic and Moens (2015); Vulic and Korhonen (2016)
 Need document-aligned data
- Learn monolingual word embeddings and map using seed lexicon
 Mikolov et al. (2013); Faruqui and Dyer (2014); Lazaridou et al. (2015)
 Need seed lexicon

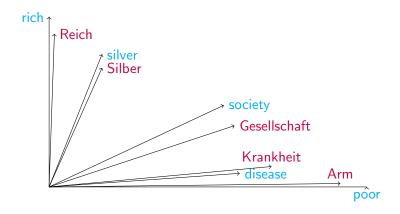
Post-hoc mapping with seed lexicon

- Learn monolingual word embeddings
- ullet Learn a linear mapping W



Post-hoc mapping with seed lexicon

Project source words into target space



Post-hoc Mapping with seed lexicon

- Train monolingual word embeddings (Word2vec) in English
 - Need English monolingual data
- Train monolingual word embeddings (Word2vec) in German
 - ► Need German monolingual data
- Learn mapping W using a seed lexicon
 - Need a list of 5000 English words and their translation

Learning W with Regression

(Conneau et al., 2017)

Regression (Mikolov et al. (2013))

$$\mathbf{W}^* = \mathop{\mathsf{arg\,min}}_{\mathbf{W}} \sum_{\mathbf{i}}^{\mathbf{n}} \mid\mid \mathbf{x_i} \mathbf{W} - \mathbf{y_i} \mid\mid^2$$

- x_i : **embedding** of i-th source (English) word in the seed lexicon.
- y_i: **embedding** of i-th target (German) word in the seed lexicon.

Learning W with Ridge Regression

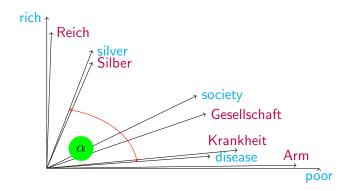
Regression (Mikolov et al. (2013))

$$\mathbf{W}^* = \mathop{\mathsf{arg\,min}}_{\mathbf{W}} \sum_{\mathbf{i}}^{\mathbf{n}} ||\ \mathbf{x_i} \mathbf{W} - \mathbf{y_i}\ ||^2$$

- Predict projection y* by computing x_iW
- Compute squared error between y* and yi
 - Correct translation t_i given in seed lexicon
 - ▶ Vector representation $\mathbf{y_i}$ is given by embedding of t_i
- Find W such that squared error over training set is minimal

Bilingual lexicon induction

- Task to evaluate bilingual word embeddings intrinsically
- Given a set of source words, find the corresponding translations:
 - Given silver, find its vector in the BWE
 - ► Retrieve the German word whose vector is closest (cosine distance)



Bilingual lexicon induction with ridge regression

Languages	Acc.		
En-De	68.4%		
De-En	67.7%		
En-Es	77.4%		
Es-En	77.3%		

• MUSE: Conneau et al. (2017)

NER Results

- Use the bilingual word embeddings to initialize the lookup table in the NER classifier
- Ni et al. (2017)
- Spanish:
 - Spanish training: 80.6
 - English training: 57.4
- Dutch:
 - ▶ Dutch training: 82.3
 - ► English training: 60.3
- German:
 - ► German training: 71.8
 - ► English training: 54.4

Summary

- Using neural networks for NER yields good results using (almost) raw representations of words
- Word embeddings can be learned automatically on large amounts of non-annotated data
- Giving pre-trained word embeddings as input to neural networks improve end-to-end task
- The networks can read the input sequentially and output labels sequentially
- Bilingual word embeddings make it possible to transfer knowledge from resource rich languages

Thank you!

References I

- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost) from scratch. *Journal of Machine Learning Research*.
- Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. (2017). Word translation without parallel data. arXiv preprint arXiv:1710.04087.
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.
- Duong, L., Kanayama, H., Ma, T., Bird, S., and Cohn, T. (2016). Learning crosslingual word embeddings without bilingual corpora. In Proc. EMNLP.
- Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using multilingual correlation. In *Proc. EACL*.

References II

- Florian, R., Ittycheriah, A., Jing, H., and Zhang, T. (2003). Named entity recognition through classifier combination. In *Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4*.
- Gouws, S., Bengio, Y., and Corrado, G. (2015). Bilbowa: Fast bilingual distributed representations without word alignments. In *Proc. ICML*.
- Gouws, S. and Søgaard, A. (2015). Simple task-specific bilingual word embeddings. In *Proc. NAACL*.
- Hermann, K. M. and Blunsom, P. (2014). Multilingual models for compositional distributed semantics. In *Proc. ACL*, pages 58–68, Baltimore, Maryland. Association for Computational Linguistics.
- Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
- Lazaridou, A., Dinu, G., and Baroni, M. (2015). Hubness and pollution: Delving into cross-space mapping for zero-shot learning. In *Proc. ACL*.

References III

- Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In *Proceedings of the 26th annual international conference on machine learning*.
- Mikolov, T., Le, Q. V., and Sutskever, I. (2013). Exploiting similarities among languages for machine translation. *CoRR*, abs/1309.4168.
- Ni, J., Dinu, G., and Florian, R. (2017). Weakly supervised cross-lingual named entity recognition via effective annotation and representation projection. *arXiv* preprint *arXiv*:1707.02483.
- Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word representations. In *Proc. of NAACL*.
- Vulic, I. and Korhonen, A. (2016). On the Role of Seed Lexicons in Learning Bilingual Word Embeddings. In *Proc. ACL*, pages 247–257.

References IV

Vulic, I. and Moens, M. (2015). Bilingual word embeddings from non-parallel document-aligned data applied to bilingual lexicon induction. In *Proc. ACL*.