Seminar Topics: Information Extraction English topics!

Alexandra Chronopoulou

achron@cis.lmu.de

Debiasing models used for toxic language detection

- **Toxic language detection**: task of automatically identifying text that is offensive/hateful
- Toxic language primarily targets members of minority groups
- Dataset biases, that can be caused by a **problematic data creation process**, create a challenge to detoxifying NLP models
- Target: enable toxic language detection without suppressing marginalized voices
- Recent interest in developing debiasing methods for standard natural language understanding (NLU) tasks

Debiasing models used for toxic language detection

- 1. Adversarially remove racial information from text
 - Elazar and Goldberg, 2018, Adversarial Removal of Demographic Attributes from Text Data, In Proceedings of the Conference on Empirical Methods in Natural Language Processing
- 2. Detection of biases in toxic language
 - Sap et al., 2019, **The Risk of Racial Bias in Hate Speech Detection**, In *Proceedings of the Annual Meeting of the Association for Computational Linguistics*
 - Clark et al., 2019, Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases, In Proceedings of the Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing
- 3. Automated debiasing for toxic language detection
 - Zhou et al., 2021, Challenges in Automated Debiasing for Toxic Language Detection, In Proceedings of the Conference of the European Chapter of the Association for Computational Linguistics

Language models become domain experts

- Language models (like BERT) are trained on large-scale open-domain corpora → general language representations
- To perform well in specific, more narrow domains (legal, medical, etc) they need **domain-specific knowledge**
- Does a language model know that "Paracetamol can treat cold"? Yes, if multiple occurrences of the phrase in the pretraining corpus
- What if there are not? One solution: **fine-tuning** but computationally expensive
- How can we make a language model a domain expert?
- Knowledge graphs (KGs) serve as a good solution and can be integrated in the LM

Language models become domain experts

- 1. Learning words and entities using attentive distant supervision
 - Cao et al., 2018, Joint representation learning of cross-lingual words and entities via attentive distant supervision, In Proceedings of the Conference on Empirical Methods in Natural Language Processing
- 2. Incorporating entities into language models
 - Zhang et al., 2019, ERNIE: Enhanced Language Representation with Informative Entities, In Proceedings of the Annual Meeting of the Association for Computational Linguistics
- 3. Knowledge-Enabled Bidirectional Encoder Representation from. Transformers (K-BERT)
 - Liu et al., 2019, K-BERT: Enabling Language Representation with Knowledge Graph, In Proceedings of the AAAI Conference on Artificial Intelligence

Document-level Relation Extraction

- **Relation Extraction** (RE) is the task of identifying **relational facts** between entities from plain text
- It is important for large-scale knowledge graph construction
- RE requires **reading** and **reasoning** over multiple sentences in a document
- Most work focuses on **sentence-level** RE, although at least 40.7% facts sampled from Wikipedia can be extracted only using **multiple** sentences

Document-level Relation Extraction

- 1. A large document-level relation extraction dataset
 - Yao et al., 2019, DocRED: A Large-Scale Document-Level Relation Extraction Dataset, In Proceedings of the Annual Meeting of the Association for Computational Linguistics
- 2. Using hierarchy to extract document-level relations
 - Tang et al., 2020, HIN: Hierarchical Inference Network for Document-Level Relation Extraction, In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining
- 3. Cross-document mention-level and entity-level graphs to infer relations
 - Zeng et al., 2020, Double Graph Based Reasoning for Document-level Relation Extraction, In Proceedings of the Conference on Empirical Methods in Natural Language Processing

Nested Named Entity Recognition

- Named entity recognition: identifying text spans associated with proper names and classifying them according to their semantic class such as *person*, *organization*, etc
- Mention detection: text spans *referring to named, nominal or prominal entities* are identified and classified according to their semantic class
- In the Fig. below, a PERSON named entity is nested in an entity mention of type LOCATION

... [the burial site of [Sheikh Abbad]_{PERSON}]_{LOCATION} is located ...

Fig. from Katiyar and Cardie, 2018.

• Most existing methods would **miss the nested entity** - and nested entities are fairly **common**

Nested Named Entity Recognition

- 1. Mention hypergraph model for nested entity detection
 - Lu and Roth, 2015, Joint Mention Extraction and Classification with Mention Hypergraphs, In Proceedings of the Conference on Empirical Methods in Natural Language Processing
- 2. Neural network-based methods for simple NER
 - Chiu and Nichols, 2016, Named Entity Recognition with Bidirectional LSTM-CNNs, In Transactions of the Association for Computational Linguistics
 - Lample et al., 2016, Neural Architectures for Named Entity Recognition, In Proceedings of the North American Chapter of the Association for Computational Linguistics
- 3. Neural-network based approach for nested NER
 - Katiyar and Cardie, 2018, Nested Named Entity Recognition Revisited, In Proceedings of the North American Chapter of the Association for Computational Linguistics