Feedforward Neural Networks and Word Embeddings

Prof. Dr. Alexander Fraser (slides originally by Dr. Fabienne Braune)

CIS, LMU Munich

WS 2023/2024

Outline

- Linear models
- 2 Limitations of linear models
- Neural networks
- A neural language model
- Word embeddings

LINEAR MODELS

Binary Classification with Linear Models

Example: the seminar at < stime > 4 pm will

Classification task: Do we have an < stime > tag in the current position?

Word	Lemma	LexCat	Case	SemCat	Tag
the	the	Art	low		
seminar	seminar	Noun	low		
at	at	Prep	low		stime
4	4	Digit	low		
pm	pm	Other	low	timeid	
will	will	Verb	low		

Feature Vector

Encode context into feature vector:

1 2 3	bias term -3_lemma_the -3_lemma_giraffe		1 1 0
102 103	 -2_lemma_seminar -2_lemma_giraffe		1 0
202 203	 -1_lemma_at -1_lemma_giraffe		1 0
302 303	$+1_{ m lemma}4 \ +1_{ m lemma}giraffe$		1 0
	• • •	• • • •	

Dot product with weight vector

$$h(X) = X \Theta^{T}$$

$$= X \cdot \Theta$$

$$X = \begin{bmatrix} x_{0} = 1 \\ x_{1} = 1 \\ x_{2} = 0 \\ \dots \\ x_{101} = 1 \\ x_{102} = 0 \\ \dots \\ x_{201} = 1 \\ x_{202} = 0 \\ \dots \\ x_{301} = 1 \\ x_{302} = 0 \\ \dots \end{bmatrix}$$

$$\Theta = \begin{bmatrix} w_{0} = 1.00 \\ w_{1} = 0.01 \\ w_{2} = 0.01 \\ \dots \\ x_{101} = 0.01 \\ x_{102} = 0.01 \\ \dots \\ x_{201} = 0.01 \\ x_{301} = 0.01 \\ x_{302} = 0.01 \\ \dots \end{bmatrix}$$

$$\Theta = \begin{bmatrix} w_0 = 1.00 \\ w_1 = 0.01 \\ w_2 = 0.01 \\ \dots \\ x_{101} = 0.01 \\ x_{102} = 0.01 \\ \dots \\ x_{201} = 0.01 \\ x_{202} = 0.01 \\ \dots \\ x_{301} = 0.01 \\ x_{302} = 0.01 \\ \dots \end{bmatrix}$$

Prediction with dot product

$$h(X) = X \cdot \Theta$$

$$= x_0 w_0 + x_1 w_1 + \dots + x_n w_n$$

$$= 1 * 1 + 1 * 0.01 + 0 * 0.01 + \dots + 0 * 0.01 + 1 * 0.01$$

Predictions with linear models

Example: the seminar at < stime > 4 pm will

Classification task: Do we have an < stime > tag in the current position?

Linear Model: $h(X) = X \cdot \Theta$

Prediction: If h(X) > 0, yes. Otherwise, no.

Getting the right weights

Training: Find weight vector Θ such that h(X) is the correct answer as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with correct labels y_i , find Θ such that $h(X(t_i)) = y_i$ for as many t_i as possible.
- $\rightarrow X(t_i)$ is the feature vector for the i-th training example t_i

Dot product with trained weight vector

$$h(X) = X \cdot \Theta$$

$$X = \begin{bmatrix} x_0 = 1 \\ x_1 = 1 \\ x_2 = 0 \\ \dots \\ x_{101} = 1 \\ x_{102} = 0 \\ \dots \\ x_{201} = 1 \\ x_{202} = 0 \\ \dots \\ x_{301} = 1 \\ x_{302} = 0 \\ \dots \end{bmatrix}$$

$$\Theta = \begin{bmatrix} w_0 = 1.00 \\ w_1 = 0.001 \\ w_2 = 0.002 \\ \dots \\ w_{101} = 0.012 \\ w_{102} = 0.0015 \\ \dots \\ w_{201} = 0.4 \\ w_{202} = 0.005 \\ \dots \\ w_{301} = 0.1 \\ w_{302} = 0.04 \\ \dots \end{bmatrix}$$

E.g. measure semantic similarity:

Word	sim(time)
the	0.0014
seminar	0.0014
at	0.1
4	2.01
pm	3.02
will	0.5

$$h(X) = X \cdot \Theta$$

$$X = \begin{bmatrix} x_0 = 1.0 \\ x_1 = 50.5 \\ x_2 = 52.2 \\ \dots \\ x_{101} = 45.6 \\ x_{102} = 60.9 \\ \dots \\ x_{201} = 40.4 \\ x_{202} = 51.9 \\ \dots \\ x_{301} = 40.5 \\ x_{302} = 35.8 \\ \dots \end{bmatrix}$$

$$\Theta = \begin{bmatrix} w_0 = 1.00 \\ w_1 = 0.001 \\ w_2 = 0.001 \\ \dots \\ x_{101} = 0.012 \\ x_{102} = 0.0015 \\ \dots \\ x_{201} = 0.4 \\ x_{202} = 0.005 \\ \dots \\ x_{301} = 0.1 \\ x_{302} = 0.04 \\ \dots \end{bmatrix}$$

$$h(X) = X \cdot \Theta$$

$$= x_0 w_0 + x_1 w_1 + \dots + x_n w_n$$

$$= 1.0 * 1 + 50.5 * 0.001 + \dots + 40.5 * 0.1 + 35.8 * 0.04$$

$$= 540.5$$

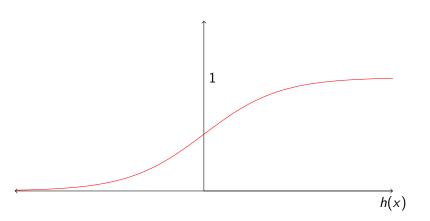
Classification task: Do we have an < stime > tag in the current position?

Prediction: h(X) = 540.5

• Can we transform this into a probability?

Sigmoid function

We can push h(X) between 0 and 1 using a **non-linear** activation function The **sigmoid function** $\sigma(Z)$ is often used



Logistic Regression

Classification task: Do we have an < stime > tag in the current position?

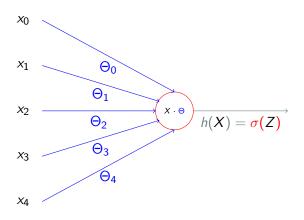
Linear Model: $Z = X \cdot \Theta$

Prediction: If Z > 0, yes. Otherwise, no.

Logistic regression:

- Use a **linear model** and squash values between 0 and 1.
 - Convert real values to probabilities
- Put threshold to 0.5.
- Positive class above threshold, negative class below.

Logistic Regression

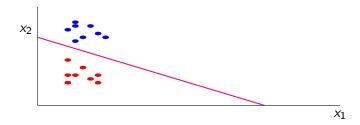


LINEAR MODELS: LIMITATIONS

Decision Boundary

What do linear models do?

- $\sigma(Z) > 0.5$ when $Z(=X \cdot \Theta) > 0$
- Model defines a decision boundary given by $X \cdot \Theta = 0$ positive examples (have stime tag) negative examples (no stime tag)



Exercise

When we model a task with linear models, what assumption do we make about positive/negative examples?

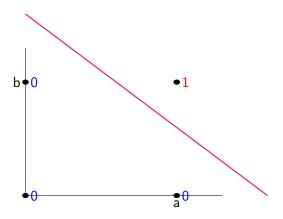
Modeling 1: Learning a predictor for \land

a	b	$a \wedge b$	b ∮ 0	• 1
0	0	0		
0	1	0		
1	0	0		
1	1	1	• 0	0

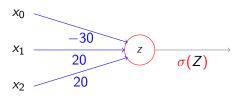
Features : a, b Feature values : binary

Can we learn a linear model to solve this problem?

Modeling 1: Learning a predictor for \land

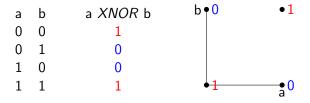


Modeling 1: Logistic Regression



<i>x</i> ₀	x_1	<i>x</i> ₂	$x_1 \wedge x_2$
1	0	0	$\sigma(1*-30+0*20+0*20) = \sigma(-30) \approx 0$
1	0	1	$\sigma(1*-30+0*20+1*20) = \sigma(-10) \approx 0$
1	1	0	$\sigma(1*-30+1*20+0*20) = \sigma(-10) \approx 0$
1	1	1	$\sigma(1*-30+1*20+1*20) = \sigma(10) \approx 1$

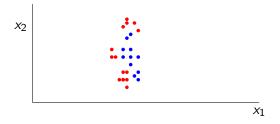
Modeling 2: Learning a predictor for XNOR



Features: a, b Feature values: binary

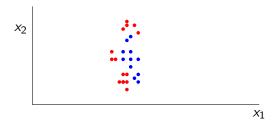
Can we learn a linear model to solve this problem?

Non-linear decision boundaries



Can we learn a linear model to solve this problem?

Non-linear decision boundaries



Can we learn a linear model to solve this problem?

No! Decision boundary is non-linear.

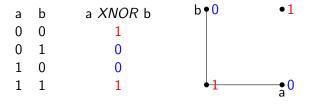
Learning a predictor for XNOR

Linear models not suited to learn non-linear decision boundaries.

Neural networks can do that.

NEURAL NETWORKS

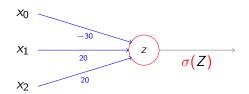
Learning a predictor for XNOR



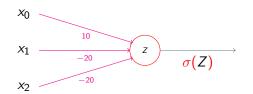
Features: a, b Feature values: binary

Can we learn a **non-linear model** to solve this problem? Yes! E.g. through function composition.

Function Composition

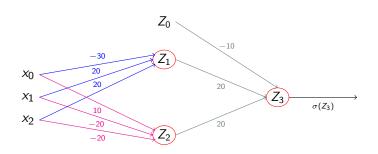


<i>x</i> ₀	x_1	<i>x</i> ₂	$x_1 \wedge x_2$
1	0	0	≈ 0
1	0	1	≈ 0
1	1	0	≈ 0
1	1	1	≈ 1



x_0	x_1	x_2	$\neg x_1 \wedge \neg x_2$
1	0	0	≈ 1
1	0	1	≈ 0
1	1	0	≈ 0
1	1	1	≈ 0

Function Composition



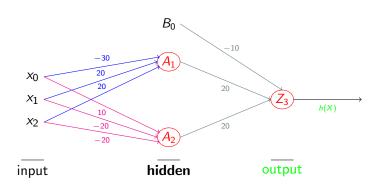
<i>x</i> ₀	x_1	<i>x</i> ₂	$\sigma(Z_1)$	$\sigma(Z_2)$	$\sigma(Z_3)$
1	0	0	≈ 0	≈ 1	$\sigma(1*-10+0*20+1*20) = \sigma(10) \approx 1$
1	0	1	≈ 0	≈ 0	$\sigma(1*-10+0*20+0*20) = \sigma(-10) \approx 0$
1	1	0	≈ 0	≈ 0	$\sigma(1*-10+0*20+0*20) = \sigma(-10) \approx 0$
1	1	1			$\sigma(1*-10+1*20+0*20) = \sigma(10) \approx 1$

Feedforward Neural Network

We just created a **feedforward neural network** with:

- 1 input layer X (feature vector)
- 2 weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$
- 1 hidden layer **H** composed of:
 - ▶ 2 activations $A_1 = \sigma(Z_1)$ and $A_2 = \sigma(Z_2)$ where:
 - $\star Z_1 = X \cdot \Theta_1$
 - ★ $Z_2 = X \cdot \Theta_2$
- 1 output unit $h(X) = \sigma(Z_3)$ where:
 - $ightharpoonup Z_3 = \mathbf{H} \cdot \Theta_3$

Feedforward Neural Network



Computation of hidden layer H:

•
$$A_1 = \sigma(X \cdot \Theta_1)$$

•
$$A_2 = \sigma(X \cdot \Theta_2)$$

•
$$B_0 = 1$$
 (bias term)

Computation of output unit h(X):

•
$$h(X) = \sigma(\mathbf{H} \cdot \Theta_3)$$

General Feedforward Neural Network

Classification task: Do we have an < stime > tag in the current position?

Neural network: $h(X) = \sigma(\mathbf{H} \cdot \Theta_n)$, with:

$$\mathbf{H} = egin{bmatrix} B_0 = 1 \ A_1 = \sigma(X \cdot oldsymbol{\Theta}_1) \ A_2 = \sigma(X \cdot oldsymbol{\Theta}_2) \ \dots \ A_j = \sigma(X \cdot oldsymbol{\Theta}_j) \end{bmatrix}$$

Prediction: If h(X) > 0.5, yes. Otherwise, no.

Getting the right weights

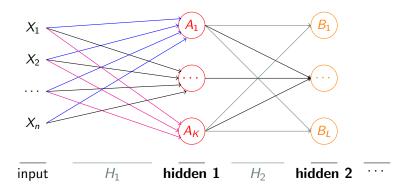
Training: Find weight matrices $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that h(X) is the **correct answer** as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with **correct labels y_i**, find $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ such that $h(X) = \mathbf{y_i}$ for as many t_i as possible.
 - \rightarrow Computation of h(X) called forward propagation
 - \rightarrow Modify $U = (\Theta_1, \Theta_2)$ and $V = \Theta_3$ with error back propagation

The intuition behind back propagation is the same as the perceptron update!

Network architectures

Depending on task, a particular network architecture can be chosen:



Note: Bias terms omitted for simplicity

Multi-class classification

- More than two labels
- Instead of "yes" and "no", predict $c_i \in C = \{c_1, \dots, c_k\}$, where k is the number of classes
- For instance, if we want to detect border tags for stime and etime, then we don't only have the <stime> label but also: </stime>, <etime>, </etime>, no tag
- Use 5 output units (5 is the number of classes)
 - Output layer instead of a single output unit
 - ► The class with the highest activation is chosen
 - Probabilities can be obtained by dividing the exponentiated activation for a class by the sum of the exponentiated activations ("softmax")

Summary: Neural Networks

- We showed how to use neural networks to solve non-linear decision problems
- Neural networks are very powerful much more powerful than linear models, even more powerful than decision trees
- But we have been working with very simple features (binary features so far in our example).
- Neural networks can combine these simple features into very complex features (as was done previously with feature selection)
- But now we will show how neural language modeling led to the development of very powerful features, "word embeddings", which are associated with word types

A NEURAL LANGUAGE MODEL

Neural language model

- Early application of neural networks (Bengio et al. 2003)
- Task: Given k previous words, predict the current word Estimate: $P(w_t|w_{t-k},\cdots,w_{t-2},w_{t-1})$
- Previous (non-neural) approaches:

Problem: Joint distribution of consecutive words difficult to obtain

- \rightarrow chose small history to reduce complexity (n=3)
- ightarrow predict for unseen history through back-off to smaller history

Drawbacks:

Takes into account small context

Does not model similarity between words

Word similarity for language modeling

- The cat is walking in the bedroom
- The dog was running in a room
- A cat was running in a room
- A dog was walking in a bedroom
 - → Model similarity between (cat,dog), (room, bedroom)
 - \rightarrow Generalize from 1 to 2 etc.

Neural Language Model (LM)

Solution:

Use word embeddings to represent each word in history

- \rightarrow Each word is represented in relation to the others
- → Distributed word feature vector

Feed to a neural network to learn parameters for the LM task

Feedforward Neural Network for LM

Training example: The cat is walking in the bedroom

Neural network input:

Look at words preceeding bedroom

- \rightarrow The cat is₋₄ walking₋₃ in₋₂ the₋₁ bedroom
- \rightarrow Create word embedding (LT_i) for window

Give LT_i as input to Feedforward Neural Network

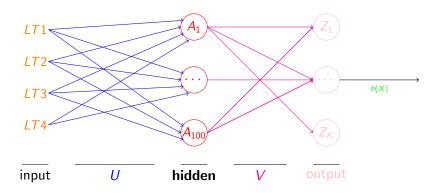
Neural network training:

Predict current word (forward propagation)

→ should be bedroom

Train weights by backpropagating error

Feedforward Neural Network for LM



Input: word embeddings LT;

Output: predicted label (current word)

Note: Bias terms omitted for simplicity

Feedforward Neural Network

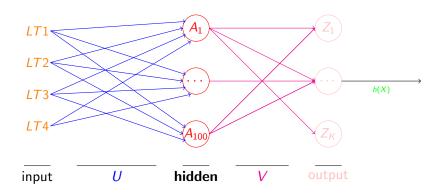
```
Input layer (X): Word features LT1, LT2, LT3, LT4
Weight matrices U, V
Hidden layer (H): σ(X · U + d)
Output layer (0): H · V + b
Prediction: h(X) = softmax(0)
• Predicted class is the one with highest probability (given by softmax)
```

Weight training

Training: Find weight matrices U and V such that h(X) is the **correct** answer as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with **correct labels y**_i, find U and V such that $h(X) = y_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) with forward propagation
 - $\rightarrow U$ and V with error back propagation

Forward Propagation



Forward propagation:

 \rightarrow Perform all operations to get h(X) from input LT.

Forward Propagation

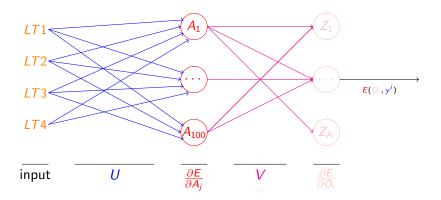
```
Input layer (X): Word features LT1, LT2, LT3, LT4
Weight matrices U, V
Hidden layer (H): σ(X · U + d)
Output layer (0): H · V + b
Prediction: h(X) = softmax(0)
• Predicted class is the one with highest probability (given by softmax)
```

Goal of training: adjust weights such that correct label is predicted

→ Error between correct label and prediction is minimal

Sketch:

- Convert difference between prediction and error into derivatives
- Compute derivatives in each hidden layer from layer above
 - Backpropagate the error derivative with respect to the output of a unit
- Use derivatives with respect to the activations to get error derivatives with respect to incoming weights



Backpropagation:

- \rightarrow Compute E
- \rightarrow Compute $\frac{\partial E}{\partial O_i}$

Compute error at output E:

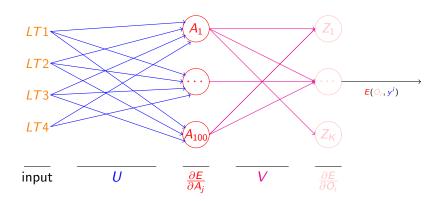
Compare output unit with y^i

 $ightharpoonup y^i$ vector with 1 in correct class, 0 otherwise

$$E = \frac{1}{n} \sum_{i=1}^{n} (y_i - O_i)^2 \text{ (mean squared)}$$

Compute $\frac{\partial E}{\partial O_i}$:

$$\frac{\partial E}{\partial O_i} = -(y_i - O_i)$$



Backpropagation:

 \rightarrow Compute $\frac{\partial E}{\partial A_j}$

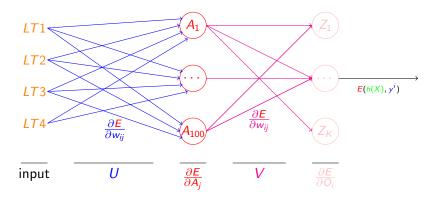
Compute **derivatives** in each hidden layer from layer above:

Compute derivative of error with respect to logit (output)

Compute derivative of error with respect to previous hidden unit

Compute derivative with respect to weights

 \rightarrow Use **recursion** to do this for every layer



Weight training

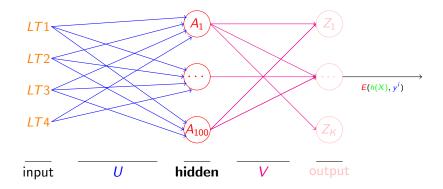
Training: Find weight matrices U and V such that h(X) is the **correct** answer as many times as possible.

- \rightarrow Computation of h(X) with forward propagation
- $\rightarrow U$ and V with error back propagation

For each batch of training examples

- Forward propagation to get predictions
- Backpropagation of error
 - Gives gradient of E given input
- Modify weights (gradient descent)
- Goto 1 until convergence

Word Embedding Layer



Word Embedding Layer

• Each word type encoded into index vector
$$w_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- LT_i is dot product of weight matrix C with index of w_i
 - \rightarrow C is **shared**. Each column in C is used for all words (tokens) of a particular word-type.

Dot product with (trained) weight vector

 $W = \{ \mathsf{the}, \mathsf{cat}, \mathsf{on}, \mathsf{table}, \mathsf{chair} \}$

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.02 & 0.1 & 0.05 & 0.03 & 0.01\\0.15 & 0.2 & 0.01 & 0.02 & 0.11\\0.03 & 0.1 & 0.04 & 0.04 & 0.12 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot C = \begin{bmatrix} 0.03 \\ 0.02 \\ 0.04 \end{bmatrix}$$

Words get mapped to lower dimension

 \rightarrow Hyperparameter to be set

Dot product with (initial) weight vector

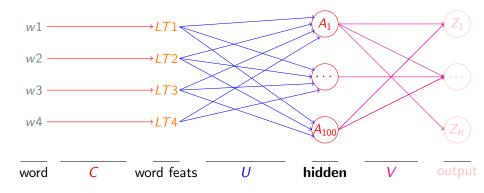
 $W = \{ \text{the,cat,on,table,chair} \}$

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.01 & 0.01 & 0.01 & 0.01 & 0.01\\0.01 & 0.01 & 0.01 & 0.01 & 0.01\\0.01 & 0.01 & 0.01 & 0.01 & 0.01 \end{bmatrix}$$

$$LT_{table} = w_{table} \cdot C = \begin{bmatrix} 0.01 \\ 0.01 \\ 0.01 \end{bmatrix}$$

Feature vectors same for all words.

Feedforward Neural Network with Lookup Table



Note: Bias terms omitted for simplicity

Weight training

Training: Find weight matrices C, U and V such that h(X) is the **correct** answer as many times as possible.

- \rightarrow Given a set T of training examples $t_1, \dots t_n$ with **correct labels y**_i, find C, U and V such that $h(X) = \mathbf{y}_i$ for as many t_i as possible.
 - \rightarrow Computation of h(X) with forward propagation
 - \rightarrow Modify C, U and V with error back propagation

Dot product with (trained) weight matrix

 $W = \{ \mathsf{the}, \mathsf{cat}, \mathsf{on}, \mathsf{table}, \mathsf{chair} \}$

$$w_{table} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix} \quad C = \begin{bmatrix} 0.02 & 0.1 & 0.05 & 0.03 & 0.01\\0.15 & 0.2 & 0.01 & 0.02 & 0.11\\0.03 & 0.1 & 0.04 & 0.04 & 0.12 \end{bmatrix}$$

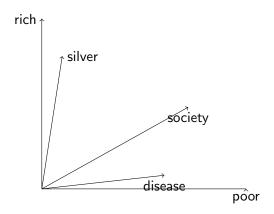
$$LT_{table} = w_{table} \cdot C = \begin{bmatrix} 0.03 \\ 0.02 \\ 0.04 \end{bmatrix}$$

Each word type gets a specific feature vector

WORD EMBEDDINGS

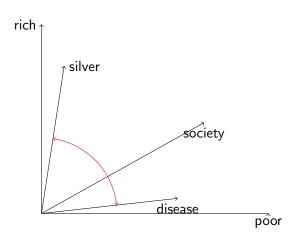
Word Embeddings

• Representation of words in vector space



Word Embeddings

- Similar words are close to each other
 - → Similarity is the cosine of the angle between two word vectors



Underlying thoughts

- Assume the equivalence of:
 - Two words are semantically similar.
 - ► Two words occur in similar contexts (Miller & Charles, roughly).
 - ► Two words have similar word neighbors in the corpus.
- Elements of this are from Leibniz, Harris, Firth, and Miller.
- Strictly speaking, similarity of neighbors is neither necessary nor sufficient for semantic similarity.
- But perhaps this is good enough.

Adapted slide from Hinrich Schütze

Learning word embeddings

Count-based methods:

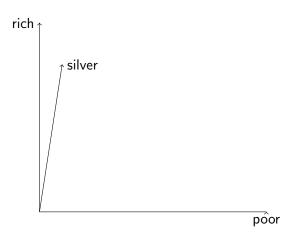
- Compute cooccurrence statistics
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation

Word cooccurrence in Wikipedia

- corpus = English Wikipedia
- cooccurrence defined as occurrence within k = 10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34
 - cooc.(rich,disease) = 17
 - cooc.(poor,disease) = 162
 - cooc.(rich,society) = 143
 - cooc.(poor,society) = 228

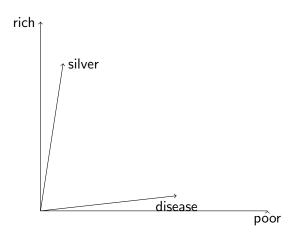
Adapted slide from Hinrich Schütze

Coocurrence-based Word Space



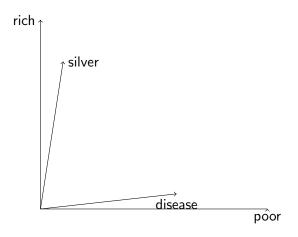
cooc.(poor,silver)=34,cooc.(rich,silver)=186

Coocurrence-based Word Space



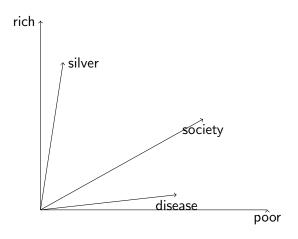
cooc.(poor,disease)=162,cooc.(rich,disease)=17.

Exercise



ccooc.(poor,society)=228, cooc.(rich,society)=143 How is it represented?

Coocurrence-based Word Space



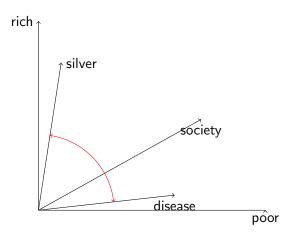
cooc.(poor,society)=228, cooc.(rich,society)=143

Dimensionality of word space

- Up to now we've only used two dimension words: rich and poor.
- ullet Do this for all possible words in a corpus o high-dimensional space
- Formally, there is no difference to a two-dimensional space with three vectors.
- Note: a word can have a dual role in word space.
 - ▶ Each word can, in principle, be a dimension word, an axis of the space.
 - But each word is also a vector in that space.

Adapted slide from Hinrich Schütze

Semantic similarity



Similarity is the cosine of the angle between two word vectors

Learning word embeddings

Count-based methods:

- Compute cooccurrence statistics
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation

Neural networks:

- Predict a word from its neighbors
- Learn (small) embedding vectors

Word vectors with Neural Networks

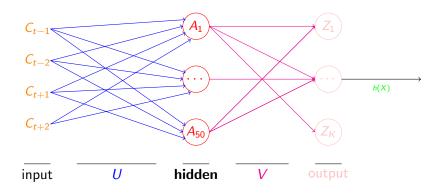
- LM Task: Given k previous words, predict the current word
 - \rightarrow For each word w in V, model $P(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n})$
 - → Learn embeddings C of words
- Word embeddings learning task: Given k context words, predict the current word
 - → Learn embeddings C of words

Network architecture



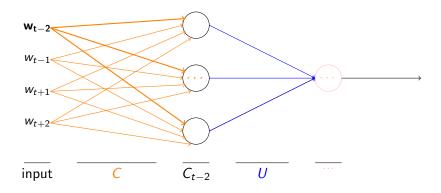
Given words w_{t-2} , w_{t-1} , w_{t+1} and w_{t+2} , predict w_t ("CBOW") Note: Bias terms omitted for simplicity

Network architecture



We want the context vectors \rightarrow embed words in shared space Note: Bias terms omitted for simplicity

Getting the Word Embeddings

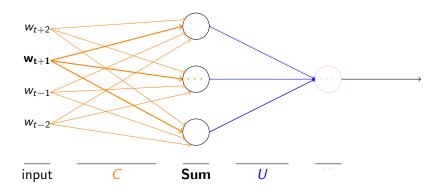


Note: Bias terms omitted for simplicity

Simplifications

- Remove hidden layer
- Sum over all projections

Simplifications



Remove hidden layer and sum over context Note: Bias terms omitted for simplicity

Simplifications

- Single logistic unit instead of output layer
 - → No need for distribution over words (only vector representation)
 - → Task as binary classification problem:
 - Given input and weight matrix say if w_t is current word
 - ▶ We know the correct w_t , how do we get the wrong ones?
 - → negative sampling

Word2Vec

- BOW model (Mikolov. 2013)
- Skip-gram model:
 - ▶ Input is w_t
 - ▶ Prediction is w_{t+2} , w_{t+1} , w_{t-1} and w_{t-2}

Applications

Semantic similarity:

- How similar are the words:
 - coast and shore; rich and money; happiness and disease; close and open
- WordSim-353 (Finkelstein et al. 2002)
 - Measure associations
- SimLex-999
 - Only measure semantic similarity

Other tasks:

 Use word embeddings as input features for other tasks (e.g. sentiment analysis, language modeling, named entity recognition)

Recap

Cannot fit data with non-linear decision boundary with linear models

Solution: compose non-linear functions with neural networks

- \rightarrow Successful in many NLP applications:
 - Language modeling
 - Learning word embeddings
- Feeding word embeddings into neural networks has proven successful in many NLP tasks, e.g.:
 - Sentiment Analysis
 - Named Entity Recognition

Questions?

Some Further Issues

- The backup slides (at the end) show the details of backpropagation, it is a good idea to look at these.
- Neural networks can be shown to approximate any function arbitrarily well. See the intuitive discussion of this property in this online book, in chapter 4:
 - Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press. 2015.
 - http://neuralnetworksanddeeplearning.com/chap4.html
- I also highly recommend the other chapters in this book!

Thank you for your attention.

Backpropagation - Details

- The next slide shows the actual computation of backpropagation, showing the derivatives that are computed.
- The actual updates are also shown, these are more intuitive than the derivatives for many people.

Backpropagation

Compute derivatives in each hidden layer from layer above:

Compute derivative of error with respect to logit (output)

$$\frac{\partial E}{\partial Z_i} = \frac{\partial E}{\partial O_i} \frac{\partial O_i}{\partial Z_i} = \frac{\partial E}{\partial O_i} O_i (1 - O_i) \text{ (Note: } O_i = \frac{1}{1 + e^{-Z_i}})$$

Compute derivative of error with respect to previous hidden unit

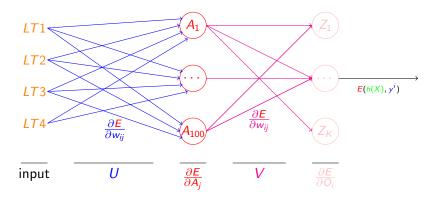
$$\frac{\partial \mathbf{E}}{\partial A_{j}} = \sum_{i} \frac{\partial \mathbf{Z}_{i}}{\partial A_{j}} \frac{\partial \mathbf{E}}{\partial \mathbf{Z}_{i}} = \sum_{i} \mathbf{w}_{ji} \frac{\partial \mathbf{E}}{\partial \mathbf{Z}_{i}}$$

Compute derivative with respect to weights

$$\frac{\partial \mathbf{E}}{\partial w_{ji}} = \frac{\partial Z_i}{\partial w_{ji}} \frac{\partial \mathbf{E}}{\partial Z_i} = O_i \frac{\partial \mathbf{E}}{\partial Z_i}$$

→ Use **recursion** to do this for every layer

Backpropagation



Weight training

Training: Find weight matrices U and V such that h(X) is the **correct** answer as many times as possible.

- \rightarrow Computation of h(X) with forward propagation
- $\rightarrow U$ and V with error back propagation

For each batch of training examples

- Forward propagation to get predictions
- Backpropagation of error
 - Gives gradient of E given input
- Modify weights (gradient descent)
- Goto 1 until convergence