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Cross-Lingual Abilities of PLMs

e Multilingual LMs (e.g. mBERT) learn rich cross-lingual representations

e How much word-level translation information is embedded in mBERT
and how can it be extracted?

— template-based querying for word translations
— analogy-based translation

e How does mBERT represent language information?

— hypothesis: mBERT representations contain a language-encoding
component and a language-neutral component

— how can these representations be disentangled?
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It’s not Greek to mBERT:
Inducing Word-Level Translations from Multilingual BERT
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Figure 1: t-SNE projections of the representations
of the template-based method.




Linguistic Structure in LLMs

LLMs perform very well at many language tasks

To what extent can these abilities be attributed to generalizable
linguistic understanding vs. surface-level lexical patterns?

Apply structured prompting in autoregressive language models

Look at word-level and span-level sequence tagging tasks

— POS tagging, sentence chunking, Named Entity Recognition
— zero- and few-shot settings




Linguistic Structure in LLMs
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demonstration

C: Alright what is this ?

T: Alright INTJ what PRON is_AUX this PRON ?_ PUNCT
C: Ilove this color .

T: I PRON love_VERB this DET color NOUN . PUNCT

C: It took a while .
T: It PRON took_VERB a_
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Figure 1: Sequence tagging via structured prompting.
Each predicted label is appended to the context along
with the next word to iteratively tag the full sentence.




Subword Segmentation

e LLMs operate on subword tokens to handle OOVs and for efficiency

e Subword segmentation strategies (BPE, WordPiece, ...):
compression algorithms based on (sub) word frequencies,
do not take into account linguistic information

e Example segmentations from BERT

realize — realize
finalize — final, ##ize
mobilize — mob, ##ili, ##ze

e Linguistically inconsistent, subwords are often meaningless

e What does this mean for BERT's ability to generalize and
to infer the meaning of complex words?




Subword Segmentation
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Figure 1: Basic experimental setup. BERT with
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