Pronoun Translation

Liane Guillou and Alexander Fraser {liane,fraser}@cis.uni-muenchen.de

CIS, Ludwig-Maximilians-Universität München

Morphology 2016 13.06.2016

- 1. Introduction
- 2. Machine Translation
- 3. Pronoun Translation in Statistical Machine Translation
- 4. Cross-lingual Pronoun Prediction
- 5. Other Issues

Outline

1. Introduction

- 2. Machine Translation
- 3. Pronoun Translation in Statistical Machine Translation
- 4. Cross-lingual Pronoun Prediction
- 5. Other Issues

Pronouns

- Examples: I, you, he/she, it, they, this, that
- First classified as a part of speech in 2BC (Dionysius Thrax, Hellenistic grammarian)
- Early definition: pronouns are a "noun substitute"
- Universal to language (Greenberg 1963)
- Pronouns occur at the *discourse level*
 - Discourse: coherent sequences of sentences, propositions, speech, or turns-at-talk
- Different ways to categorise pronouns: form vs. function

Commonly seen in grammar books:

- Personal: Classified by person [1st/2nd/3rd], number [sg./pl.], case
- Possessive: Indicates possession, e.g. "Hey! That's mine!"
- Reflexive: e.g. "John talks to himself"
- Reciprocal: e.g. "The boys don't like each other"
- Demonstrative: e.g. "Could you pass me that?"
- Indefinite: Refers to unspecified persons/things, e.g. "*Everyone* likes cats"
- **Relative**: Used in relative clauses, e.g. "That's the lady *who* owns the pie shop"
- Interrogative: Used to ask questions, e.g. "Who said that?"

- Alternative: Categorise pronouns by the function that they perform
- I.e. a "Functional Grammar" approach
- Some pronoun functions:
 - Speaker: Refers to the speaker, e.g. "I like cats"
 - Addressee: Refers to the reader/audience, e.g. "How are you?"
 - Generic: Refers to people in general, e.g. "If you own a car, you must insure it"
 - Pleonastic: Used to fill the subject position slot, e.g. "It is raining"
 - Extra-textual: Refers to things not in the text, e.g. "Look at that!"
 - Event-reference: Refers to a verb, verb phrase, clause, sentence

• Anaphoric pronouns corefer with a noun phrase

Example

I have an $[umbrella]_1$. $[It]_1$ is red.

- Anaphoric pronoun: "it"
- Noun phrase: "umbrella" (also called the antecedent)
- Corefer: "referring to the same thing"

Translating Anaphoric Pronouns

- In languages with grammatical gender, pronoun and antecedent must agree in **number** and **gender**
- Number: singular, plural
- Grammatical gender:
 - German [3]: masculine, feminine, neuter
 - French [2]: masculine, feminine
 - Czech [4]: masculine animate, masculine inanimate, feminine, neuter
 - English: none
- Grammatical gender contrasts with natural gender: male, female
 - In English we have the pronouns "he" and "she"

• In languages with grammatical gender, pronoun and antecedent must agree in number and gender

German example: umbrella \rightarrow Regenschirm [masc. sg.]
l have an umbrella. [It] is red.
Ich habe einen Regenschirm. [Es] ist rot.
Ich habe einen Regenschirm. [Sie] ist rot.
Ich habe einen Regenschirm. [Er] ist rot. \checkmark

Introduction

Translating Anaphoric Pronouns

• Pronoun-antecedent agreement also required in: French, Spanish, Czech, Italian, etc.

French example: bicycle \rightarrow vélo [masc. sg.]
I have a bicycle. [It] is red.
J'ai un vélo. Il est rouge. ✓
J'ai un vélo. Elle est rouge.

• Other antecedent translations are possible, but agreement must hold

```
\begin{array}{l} \mbox{French example: bicycle} \rightarrow \mbox{ bicyclette [fem. sg.]} \\ \mbox{I have a bicycle. [It] is red.} \\ \mbox{J'ai une bicyclette. II est rouge.} \\ \mbox{J'ai une bicyclette. Elle est rouge. } \checkmark \end{array}
```

Anaphoric: pronoun corefers with noun phrase

I have an umbrella. [It] is red.

Ich habe einen Regenschirm. [Er] ist rot.

Pleonastic: "dummy" pronoun fills subject postion

I have an umbrella. [It] is raining.

Ich habe einen Regenschirm. [Es] regnet.

Event reference: pronoun refers to span of text containg a verb

X invaded Y. [It] resulted in war.

X besetzte Y. [Dies] führte zu Krieg.

Introduction

Position / Case

- Position: subject / object [English]
- Case: nominative, accusative, dative, etc.

Case	Singular			Plural
(English nominative)	he	she	it	they
Nominative (subject)	er	sie	es	sie
Accusative (direct object)	ihn	sie	es	sie
Dative (indirect object)	ihm	ihr	ihm	ihnen
Genitive	seiner	ihrer	seiner	ihrer

Table : Third-person German Pronouns

- Some languages have many cases:
 - Czech [7]: nom, acc, dat, gen, vocative (indicates person/thing being addressed), locative (indicates location), instrumental (noun is the means by which the subject accomplishes an action)

Guillou and Fraser (CIS)

- English largely lost its case system but personal pronouns retain it
 - **Subject**: I, he, we (e.g. "I kicked the ball")
 - Object: me, him, us (e.g. "He kicked me")
- Case determined by the *grammatical function* or *syntactic role* that the pronoun performs
 - Nom: subject of a finite verb ("I went to the cinema")
 - Acc: direct object of a verb ("The clerk remembered me")
 - Dat: indirect object of a verb ("She gave a discount to me")
 - Gen: indicates possession ("That book is mine")

- In German, the preposition also determines the case of nouns, pronouns, adjectives
 - E.g. "mit" always takes the dative case
 - Two-way prepositions may take dative or accusative e.g. "in"
 - Die Leute gehen in die Kirche. [motion: acc]
 - Die Leute sitzen in der Kirche. [location: dat]

Outline

1. Introduction

- 2. Machine Translation
- 3. Pronoun Translation in Statistical Machine Translation
- 4. Cross-lingual Pronoun Prediction
- 5. Other Issues

Machine Translation

Introduction

- The use of software to translate text from one language to another
- E.g. Google Translate

Google	III O 🚱
Translate	Turn off instant translation
German Swedish English Detect language 🔫	English Japanese German 💌 Translate
Hello, my name is Liane.	Hallo, mein Name ist Liane.
۹) === →	☆ ■ •) <

Machine Translation

The Early Days

- Word-based: look up each word in a dictionary [50s]
 - Pro: Simple
 - Con: Words selected out of context
 - Con: Cannot handle idiomatic expressions (e.g. "Bite the dust")
- Rule-based: use morphological and syntactic rules [70s]
 - Pro: Linguistically motivated \rightarrow better translations
 - Con: Systems quickly become complex and difficult to maintain
- Example rule for English-to-French translation:
 - NP : Adjective <code>Noun</code> \rightarrow <code>NP</code> : <code>Noun</code> <code>Adjective</code> <code>E.g.</code> black <code>cat</code> \rightarrow <code>chat</code> noir

- Statistical MT: use large amounts of parallel data to train systems
- *Statistical*: work out the probability of a word / words being translated as X based on frequencies in the parallel data
- Split documents into sentences, which are then translated in isolation
- Common paradigms:
 - Phrase-based: translate phrases (i.e. sub-strings)
 - **Syntax-based**: translation to/from syntax trees
- 2000s to present

Machine Translation

Phrase-based Models

• German input is segmented into phrases

- Any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Translation is built from left-to-right
- Phrases may be reordered

Machine Translation

Phrase-based Models

- Pro: Rather simple
- Pro: Can handle idiomatic expressions
- **Pro**: Produced state-of-the-art translation quality for many language pairs (until recently)
- ???: Method is not linguistically motivated
- Con: Reliant on lots of parallel data
 - Ok for resource rich pairs, e.g. English-German
 - Not good for resource poor pairs, e.g. Jerrais-Gaelic
- Con: Sentences translated in isolation
 - Information from previous sentences not available when translating the current sentences

- 1. Introduction
- 2. Machine Translation
- 3. Pronoun Translation in Statistical Machine Translation
- 4. Cross-lingual Pronoun Prediction
- 5. Other Issues

Problems: Anaphoric pronouns

Example

I have an $[umbrella]_1$. $[It]_1$ is red.

- Work has focussed on Statistical Machine Translation (SMT)
- Information from previous sentences not available when translating the current sentences
- SMT systems rely on small context window around pronoun to select translation
- Inter-sentential: pronoun and antecedent in different sentences
- Inter-sentential: pronoun and antecedent in the same sentence
- Both cases are a problem for SMT

Example Translation: Intersentential Anaphoric Pronoun

Problems: Disambiguating Pronoun Function

- Different pronouns required to translate different functions of "it":
 - Anaphoric: er, sie, es
 - Pleonastic: es
 - Event reference: dies, das
- SMT systems rely on small context window around pronoun to select translation
- Context window may not be enough to disambiguate pronoun function

Some Possible Solutions

- Use external tools to detect:
 - Pronoun antecedents (anaphora/coreference resolution)
 - Pleonastic "it"
 - Position / case (dependency parser)
- Add this information to SMT pipeline:
 - Pre-processing: encode information in SMT training data [beginning]
 - Decoding: add a component within the SMT system [middle]
 - Post-processing: fix errors in SMT output [end]

Anaphora / Coreference Resolution

• Anaphora resolution: find pronoun's antecedent

Example: anaphora resolution I have an umbrella. It is red.

• Coreference resolution: find chains of coreferring pronouns / noun phrases

Example: coreference resolution I have an umbrella. The umbrella is small and red. I use it when it rains.

Dependency Parser

- Dependencies: words are connected to each other by directed links
- The (finite) verb is the structural centre or root ["had"]
- All other words are connected to the verb (directly/indirectly) by directed links

Alternative Solutions

- Don't use discourse information:
 - Use larger context windows
 - Find other ways to span more text (sophisticated language models?)
- Use a rule-based MT system
 - Linguistic rules encode how to translate pronouns
 - May incorporate coreference resolution, pleonastic "it" detection, etc.

DiscoMT 2015 Pronoun Translation Task (Hardmeier et al. 2015)

• Shared Task: teams compete on a common task

- Build MT systems trained on common data
- Translate a "test" file ("answers" are unknown)
- Systems scored and ranked by shared task organisers
- DiscoMT 2015 shared task on pronoun translation
 - Translate subject position "it" and "they" into French
 - Score translations manually, and using automatic metrics (e.g. BLEU)

DiscoMT 2015 Pronoun Translation: Systems

- Baseline: Basic phrase-based SMT system
- UU-Tiedemann: extension of the baseline, no discourse features
- IDIAP: classifier predicts pronoun translation
 - Use coreference resolution to identify anaphoric pronoun antecedents
 - Automatically replace pronouns in SMT system output (post-editing)
- UU-Hardmeier: classifier is an internal component of SMT system
 - Coreference resolution
- auto-postEDIt: rule-based automatic post-editing of SMT output
 - Coreference resolution
 - Focus on gendered anaphoric pronouns vs. non-anaphoric pronouns
- Its2: rule-based MT system
 - Coreference resolution
 - Focus on gendered anaphoric pronouns

DiscoMT 2015 Pronoun Translation: Results

	Accuracy	BLEU
Official Baseline	0.676	37.18
IDIAP	0.657	36.42
UU-Tiedemann	0.643	36.92
UU-Hardmeier	0.581	32.58
auto-postEDIt	0.543	36.91
lts2	0.419	20.94
A3-108	0.081	4.06

Table : Official Shared Task Results

- Accuracy: pronouns match category: ce, ça/cela, il, ils, elles, elles or "other" (manual)
- **BLEU**: automatic measure of overlap between MT output and a human-authored reference translation (general-purpose)

Guillou and Fraser (CIS)

- 1. Introduction
- 2. Machine Translation
- 3. Pronoun Translation in Statistical Machine Translation
- 4. Cross-lingual Pronoun Prediction
- 5. Other Issues

Cross-lingual Pronoun Prediction

- Break the translation problem down:
 - Build classifier to predict pronoun translation
 - (Later) incorporate classifier in MT system
- Cross-lingual pronoun prediction uses information from:
 - The human-authored source-language text
 - The target-language translation (human, MT)
- Aim: find the translation of each pronoun in the source-language text

Example: find French pronoun to replace XXX They arrive first . XXX arrivent en premier .

- What information do we have?
 - English pronoun: "they" [3rd-person pl., always subject position]
 - French verb: "arrivent" [3rd-person pl.]
- Translation is probably either "ils" [masc. pl.] or "elles" [fem. pl.]
- What information is missing?
 - Is "they" anaphoric, or generic?
 - If anaphoric, what is the antecedent? (for gender information)

Cross-lingual Pronoun Prediction

DiscoMT 2015 Pronoun Prediction Task (Hardmeier et al. 2015)

- Predict French translations of subject position "it" and "they"
- Nine prediction classes:
 - ce: primarily used as a "neuter" pronoun to refer to events/situations
 - elle: feminine singular subject pronoun
 - elles: feminine plural subject pronoun
 - il: masculine singular subject pronoun
 - ils: masculine plural subject pronoun
 - **ça**: demonstrative pronoun ("pick *that* up")
 - cela: demonstrative pronoun ("that")
 - **on**: indefinite pronoun ("One is most pleased...")
 - other: some other word, or nothing at all, should be inserted

Cross-lingual Pronoun Prediction

Possible Features

• Source-language text [English]

- Anaphora / coreference resolution
- Pleonastic "it" detection
- Dependency parse (subject / non-subject "it")
- X tokens either side of the pronoun
- etc.
- Target-language text [French]
 - Morphological features of nearest verb
 - Morphological features of nearest noun
 - X tokens either side of the placeholder
 - etc.

DiscoMT 2015 Pronoun Prediction: Training Data

Training data is supplied in a file format with five tab-separated columns:

- 1) The class label
- 2) The word actually removed from the text
- 3) The English source segment
- 4) The French **human authored** target segment with pronoun placeholders
- 5) List of source-target word alignments (numbers start at zero)

Example:

elles Elles They arrive first . REPLACE_0 arrivent en premier . 0-0 1-1 2-3 3-4

Cross-lingual Pronoun Prediction

DiscoMT 2015 Pronoun Prediction: Results

- Teams given a test file with predictions missing
- 13 systems + baseline (language model)
- Scores: macro-averaged F (across all prediction classes), accuracy

	Macro-F	Accuracy
Official Baseline	0.584	0.663
UU-Tiedemann	0.579	0.742
UEDIN	0.571	0.723
MALTA	0.565	0.740
IDIAP	0.164	0.407
A3-108	0.129	0.240
WITHDRAWN	0.122	0.325

Table : Official Shared Task Results

Cross-lingual Pronoun Prediction WMT 2016: A New Shared Task

- Human authored target-language text is not realistic for MT setting
- WMT 2016 task: Replace words in human authored target-language text with POS tag + lemma

```
elles Elles They arrive first . REPLACE_0 arriver
|VER en
|PRP premier
|NUM .
|. 0-0 1-1 2-3 3-4
```

- Simulates MT environment in which we can't trust morphological inflection
- Simulates two-step translation:
 - Step 1: translate English lemmas \rightarrow French lemmas
 - Step 2: generate fully inflected French from French lemmas + features
- Exercise: WMT 2016 cross-lingual pronoun prediction task

1. Introduction

- 2. Machine Translation
- 3. Pronoun Translation in Statistical Machine Translation
- 4. Cross-lingual Pronoun Prediction
- 5. Other Issues

- We cannot always assume that a pronoun in the source language should be translated as a pronoun in the target language
- It may be unnatural to use a pronoun
- It may be wrong to use a pronoun

Example: unnatural to use a possessive in German

Deshalb bleibt XyzTech mit positivem Cash Flow und gutem Ergebnis im Konzern.

As a result, we shall retain XyzTech, with **its** positive cash flow and good earnings.

Example from Becher (2011)

Guillou and Fraser (CIS)

- English \rightarrow German/French: pick the correct gender or pronoun
- German → English: other problems exist
 "sie" is ambiguous ("she", "it", "they")
- French \rightarrow English: different problems exist
 - "il" is ambiguous ("he", "it")
- Anaphora / coreference resolution can help again

Other Issues

Pro-drop

- **Pro-drop**: pronouns may be omitted when they are in some way inferable from the text
- Czech, Spanish and Japanese are pro-drop languages
- English, French and German are not
- BUT English subject pronouns often dropped in imperative sentences (e.g. Come here!)

Example: subject pro-drop in Czech

(1) I have an umbrella . It is red . (Já) mám \emptyset deštník . (On) je červený . Mám deštník. Je červený.

• Czech to English: identify pro-drop in Czech, insert pronoun in English

• English to Czech: identify pronouns that should be dropped in Czech Guillou and Fraser (CIS) Pronoun Translation 13.06.2016 43 / 47

- Some pronouns exhibit functional ambiguity: e.g. "it"
- Their correct translation requires *disambiguation* of function
- Problem of translating anaphoric pronouns into languages with *grammatical gender*
- Possible solutions to pronoun translation problem:
 - Incorporate external information (coreference resolution etc.)
 - Affecting different stages of the translation pipeline: pre, decoding, post
 - Cross-lingual pronoun prediction

Questions?

Thank you for your attention

- Viktor Becher (2011) Explicitation and implicitation in translation. A corpus-based study of English-German and German-English translations of business texts. PhD thesis, Department of Applied Linguistics (Institut für Sprachlehrforschung), University of Hamburg.
- Joseph H. Greenberg (1963) Some Universals of Grammar with Particular Reference to the Order of Meaningful Elements. Universals of Human language. MIT Press.
- Christian Hardmeier, Preslav Nakov, Sara Stymne, Jörg Tiedemann, Yannick Versley and Mauro Cettolo (2015) Pronoun-Focused MT and Cross-Lingual Pronoun Prediction: Findings of the 2015 DiscoMT Shared Task on Pronoun Translation. Proceedings of the Second Workshop on Discourse in Machine Translation (DiscoMT).