Finite State Morphology

Alexander Fraser
fraser@cis.uni-muenchen.de

CIS, Ludwig-Maximilians-Universitat Miinchen
Computational Morphology and Electronic Dictionaries

SoSe 2017
2017-05-15

Outline

* Today we will cover finite state morphology
more formally

— We'll review basic concepts from the first lecture
and from the exercises

— And define operations in finite state more formally

 We will then show how to convert regular
expressions to finite state automata

Credits

 Credits:

— Slides mostly adapted from:

— Finite State Morphology

— Helmut Schmid

— U. Taibingen - Summer Semester 2015

— Thanks also to Kemal Oflazer and Lauri Kartunnen

Review: Computational Morphology

examines word formations processes

provides analyses of word forms such as
Tarifverhandlungen:
Tarif<NN>verhandeln<V>ung<SUFF><+NN><Fem><Nom><P/[>

splits word forms into roots and affixes

provides information on
— part-of-speech such as NN, V
— canonical forms such as ,verhandeln”

— morphosyntactic properties such as Fem, Nom, P!

Terminology

word form

word as it appears in a running text: weitergehst
lemma

citation as listed in a dictionary: weitergehen
stem

part of a word to which derivational of inflectional affixes are
attached: weitergeh

root
stem which cannot be further analysed: geh

morpheme
smallest morphological units (stems, affixes): weiter, geh, en

Word Formation Processes

* Inflection
* Derivation
* Compounding

Inflection

modifies a word in order to express different grammatical
categories such as tense, mood, voice, aspect, person,
number, gender, case

verbal inflection: conjugation walks, walked, walking

nominal inflection: declension computers

usually realised by

prefixation

suffixation

circumfixation ge+hab+t

infixation auf+zu+machen (not a perfect example)
reduplication: orang+orang (plural of ,man”in Indonesian)

Derivation

creates new words

Examples: un+translat+abil+ity piti+less-ness

changes the part-of-speech and/or meaning of the word
adds prefixes, suffixes, circumfixes

conversion: changes the part-of-speech without modifying
the word book (N) - book (V) leid(en) (V) - Leid (N)

templatic morphology in Arabic
ktb + CVCCVC + (a,a) -> kattab (write)

Compounding

* creates new words by combining several stems
 example: Donau-dampf-schiff-fahrts-gesellschaft
e very productive in German

» affixoid
compounding process that turns into a derivation process

Gas+werk, Stuck+werk, Laub+werk
schul+frei, schulter+frei, schulden+frei
— no absolute boundary between compounding and derivation

Classification of Languages

isolating: Chinese, Vietnamese
little or no derivation and inflection

analytic: Chinese, English
little or no inflection

synthetic

— agglutinative: Finnish, Turkish, Hungarian, Swahili
morphemes are concatenated with little modification
each affix usually encodes a single feature

— fusional (inflecting): Sanskrit, Latin, Russian, German
inflectional affixes often encode a feature bundle: les+e (1 sg pres)

Productivity

e productive process
new word forms can easily be created
use+less, hope+less, point+less, beard+less

e unproductive process:
morphological process which is no longer active
streng+th, warm+th, dep+th

Morphotactics

Which morphemes can be arranged in which order?

translat+abil+ity
*translat+ity+abil

translat+able

*translat+able+ity (Allomorphs able-abil)

Orthographic/Phonological Rules

How is a morpheme realised in a certain context?

city+s —> cities

bake+ing - baking (e-elision)

crash+s — crashes (e-epenthesis)

beg+ing - begging (gemination)

ad+simil+ate — assimilate (assimilation)

ip+lEr = ipler kiz+lEr - kizlar (vowel harmony)

Morphological Ambiguity

leaves hanged hung

SN NS

leaf+N+pl leave+N+pl leave+V+3+sg hang+V+past

Ingredients of a Morph. Analyser

List of roots with part-of-speech
List of derivational affixes
morphotactic rules

orthographic (phonological) rules

Computational Morphology

analyses and/or generates word forms

* analysis
Abteilungen -
Abteilung<NN><Fem><Nom><PI>
Abteilung<NN><Fem><Acc><PI> ...
ab<VPART>teilen<V>ung<NNSuff><Fem><Acc><PI> ...
Abtei<NN> Lunge<NN><Fem><Nom><PI[> ...
Abt<NN> Ei<NN> Lunge<NN><Fem><Nom><PI> ...
Abt<NN> eilen<V> ung<NNSuff><Fem><Nom><PI[> ...

* generation

sichern<+V><1><Sg><Pres><Ind> - sichere, sichre

Implementation

* using a mapping table
works reasonably well for languages such as English, Chinese

e algorithmic
more suitable for languages with complex morphology such as
Turkish or Czech

— finite state transducers
simple, well understood, efficient, bidirectional (analysis &

generation)

1968

1972

1961

1980

1983
1987

Short History

Chomsky & Halle propose ordered context-sensitive rewrite
rules
Xx—>y /w_z (replace x by yinthe context w ... z)

C. Douglas Johnson discovers that ordered rewrite rules can be
implemented with a cascade of FSTs if the rules are never
applied to their own output

Schutzenberger proved that 2 sequential transducers (where
the output of the first forms the input of the second) can be
replaced by a single transducer.

Kaplan & Kay rediscover the findings of Johnson and
Schutzenberger

Kimmo Koskenniemi invents 2-level-morphology

Karttunen & Koskenniemi implement the first FST compiler
based on Kaplan’s implementation of the finite-state calculus

Finite State Automaton

directed graph with labelled transitions, a start state
and a set of final states

W>Oa>o k |>On
e d

recognises walk, walks, walked, walking, talk, talks, talked,
talking

Finite State Automaton

FSAs are isomorphic to regular expressions and regular
grammars. All of them define a regular language.

regular expression: (w|t)alk(s|ed]|ing)?
regular grammar:
S>WwWA B->s B>
S>tA B—>ed
A—->alkB B> ing

both equivalent to the automaton on the previous slide

Finite State Automaton

FSAs are isomorphic to regular expressions and regular
grammars. All of them define a regular language.

regular expression: (w|t)alk(s|ed]|ing)?

context-free

regular grammar: -
S>wWA B->s
S—>tA B—>ed @ type O
A->alkB B> ing
B->

context-
sensitive

Both are equivalent to the automaton on the previous slide

Operations on FSAs

Concatenation A B

Optionality A? = (|A)

Kleene‘s star A* =(|A|AA|AAA]...)
Disjunction A|B

Conjunction A &B

Complement A

Subtraction A—-B=A&!B
Reversal

From Regular Expressions to FSAs

single symbol a
O ©)

* Create a new start state and a new end state
 Add a transition from the start to the end state labelled , a“

From Regular Expressions to FSAs

Concatenation AB

—~(0—0@

e add epsilon transition from final state of A to start state of B
* make final state of B the new final state

From Regular Expressions to FSAs

Optionality A?
~O—@ ~5—0

e add an epsilon transition from start to end state

From Regular Expressions to FSAs

Kleene’ star A*
—~D—@ &

e add an epsilon transition from end to start state
* make start state the new end state

From Regular Expressions to FSAs

Disjunction AB

* new start state with epsilon transitions to the old start states

* new final state with epsilon transitions from the old final
states

From Regular Expressions to FSAs

Reversal

—~(U—0@ O——

* reverse all transitions
e swap start and end state

From Regular Expressions to FSAs

Conjunction A & B

* |I'm skipping the details of conjunction (see the Appendix for
the algorithm)

e Basically, we can automatically create a new FSA that
essentially runs both acceptors in parallel

 Our new FSA only accepts if both FSAs are in the accept state

e C(Clearly the FSA A&B then only accepts strings that are in the
regular languages accepted by both FSAs (FSA A and FSA B)

Properties of FSAs

e epsilon-free
no transition is labelled with the empty string epsilon
* deterministic
epsilon-free and no two transitions originating in the
same state have the same label
* minimal
no other automaton has a smaller number of states

Properties of FSAs I

* We can algorithmically construct a new FSA
from the old FSA such that it is:

— epsilon-free
— deterministic
— minimal

e See the Appendix for the algorithms

Conclusion: Finite State Acceptors

* Any regular expression can be mapped to a finite
state acceptor

— However, "regexes" in Python are misnamed!

e "Regexes" contain more powerful constructs than
mathematical regular expressions

— For instance /(.+)\1/
— However, these constructs are not used much

* See EN Wikipedia page on regular expressions, subsection
"Regular expressions in programming languages" for details

e We will now move on to finite state transducers

Finite State Transducers

FSTs are FSAs whose transitions are labelled with symbol pairs
They map strings to (sets of) other strings

ck /rl\

wa:a@ |:]
t:t

maps walk, walks, walked, walking to walk
and talk, talks, talked, talking to talk (in generation mode)

can also map walk to walk, walks, walked, walking in analysis
mode

FSTs and Regular Expressions

Single symbol mapping a:b O a:b @

Operations on FSTs

* Concatenation, Kleene's star, disjunction, conjunction,
complement (from FSAs)

e composition A || B

The output of transducer A is the input of transducer B.
* projection

— upper language replaces transition label a:b by b:b

— lower language replaces transition label a:b by a:a
The result corresponds to an automaton

"
Relations and Transducers

Regular relation

{ <ac,ac>, <abc,adc>, <abbc,addc>, <abbbc,adddc>... }

between [a b* c] and [a d* c].
‘upper language” “lower language”

Finite-state transducer
Regular expression

a:a[b:d]* c:c @ = % — @

b:d

Slide courtesy of Lauri Karttunen 158

" A
Relations and Transducers

Regular relation

{ <ac,ac>, <abc,adc>, <abbc,addc>, <abbbc,adddc>... }

between [a b* c] and [a d* c].

“upper language” “lower language™

Finite-state transducer
Regular expression

a [b:d]l* c @ - Q - :@
7

k\

Convention: when both upper and lower
symbols are same b:d

Slide courtesy of Lauri Karttunen 159

Weighted Transducers

* A weighted FST assigns a numerical weight to each transition

* The total weight of a string-to-string mapping is the sum of the
weights on the corresponding path from start to end state.

* Weighted FSTs allow disambiguation between different
analyses by choosing the one with the smallest (or largest)
weight

Working with FSTs

* FSTs can be specified by means of regular expressions (like
FSAs). The translation is performed by a compiler.

* Using the same algorithms as for FSA
— FSTs can be made epsilon-free in the sense that no transition is labelled
with €:€ (a pair of empty string symbols)
— FSTs can be made deterministic in the sense that no two transitions
originating in the same state have the same label pair

— FSTs can be minimised in the sense that no other FST which produces
the same regular relation with the same input-output alignment is
smaller. (There might be a smaller transducer producing the same
relation with a different alignment.)

e FSTs can be used in both directions (generation and analysis)

FST Toolkits

Some FST toolkits

e Xerox finite-state tools xfst and lexc
well-suited for building morphological analysers

 foma (Mans Hulden)
open-source alternative to xfst/lexc

* AT&T tools
weighted transducers for tasks such as speech recognition

little support for building morphological analysers
* openFST (Google, NYU)
open-source alternative to the AT&T tools

* SFST

open-source alternative to xfst/lexc but using a more general and flexible
programming language

SFST

* programming language for developing finite-state
transducers

 compiler which translates programs to transducers

 tools for
— applying transducers
— printing transducers
— comparing transducers

SFST Example Session

> echo "Hello\ World\!" > test.fst storing a small test program

> fst-compiler test.fst test.a calling the compiler

test.fst: 2

> fst-mor test.a interactive transducer usage
reading transducer... transducer is loaded
finished.

analyze> Hello World! input

Hello World! recognised

analyze> Hello World another input

no result for Hello World not recognised

analyze> g terminate program

SFST Programming Language

Colon operator a:b
empty string symbol <>
Example: m:m o:i u:<>s:.ce:e

identity mapping a (an abbreviation for a:a)
Example: m o:i u:<>s:ce

{abc}:{AB} is expanded to a:A b:B c:<>
Example: {mouse}:{mice}

Disjunction

John | Mary | James
accepts these three strings and maps them onto themselves

mouse | {mouse}:{mice}
analyses mouse and mice as mouse

note that analysis here maps lower language (mice) to upper
language (mouse), i.e., implements lemmatization

Generation goes in the opposite direction

Multi-Character Symbols

strings enclosed in <...> are treated as a single unit.

{mouse<N><pl>}:{mice}

analyzes mice as mouse<N><pl>

Multi-Character Symbols

A more complex example:

schreib {<V><pres>}:{} (\

{<1><sg>}:{e} |\
{<2><sg>} st} |\

{<3><sg>}:{t} |\
{<1><pl>}:{en} |\

{<2><pl>}:{t} |\
{<3><pl>}:{en})

The backslashes (\) indicate that the expression continues in the next line

What is the analysis of schreibst and schreiben?

Conclusion: Finite State Morphology

* Talked about finite state morphology in a
more formal way

* Showed how to convert regular expressions to
finite state automata

 Talked about finite state transducers for
computational morphology

— Morphological analysis and generation

* Thank you for your attention

Appendix

* Details of Conjunction of FSAs

e Algorithms for Determinisation, Composition
and Minimisation of FSAs

From Regular Expressions to FSAs

Conjunction A & B

 The new state space Q is the Kartesian product of the old
state spaces Q; and Q,, i.e. Q ={(a,b)| ae Q; &beQ,}

 The new start state is the pair of the old start states.
 The new final state is the pair of the old final states

* Atransition labelled a exists from new state (a,b) to new state
(c,d) iff a transition labelled a exists from a to cin A and from
btodinB,i.e.(a,b) > (c,d)iffa—>candb > d

Determinisation of FSAs

The new state set is the powerset of the old state set (set of
all subsets).

The new start state is the epsilon-closure of the old start state
(i.e. the start state + all states reachable from it via epsilon
transitions)

There is a transition from state g to r labelled a iff there is a
transition labelled a from some old state a in g to some old
statebinr.

The set of final states comprises all states g which contain an
old final state a.

Composition of FSAs

First, make the two FSAs deterministic.

The new state set is then the Kartesian product of the two old
state sets

The new start state is the pair consisting of the two old start
states

There is a transition from state (a,b) to state (c,d) labelled x:z
iff there is some transition labelled x:y from state a to state c
and a transition labelled y:z from state b to state d

The final state set comprises all state pairs (a,b) where both a
and b are old final states.

Minimisation of FSAs

Minimisation of A

a simple (but inefficient) minimisation algorithm
1. determinise

2. reverse
3. determinise
4. reverse

