Bilingual Word Embeddings and Recurrent Neural Networks

Fabienne Braune¹

¹LMU Munich

June 28, 2017

Outline

- Softmax Output Units
- Word Embeddings
- Bilingual Word Embeddings
- Recurrent Neural Networks
- Secap

Softmax Output Units

3

Goal of training: adjust weights such that correct label is predicted

 \rightarrow Error between correct label and prediction is minimal

Sketch:

- Compute derivatives of Error w.r.t prediction
- Compute derivatives in each hidden layer from layer above
 - Backpropagate the error derivative with respect to the output of a unit
- Use **derivatives** w.r.t the activations to get error **derivatives** w.r.t incomming weights

Backpropagation:

- \rightarrow Compute E
- \rightarrow Compute $\frac{\partial E}{\partial O_i}$

5

Compute error at output E:

Compare output unit with y^i

$$\boldsymbol{E} = \frac{1}{2} \sum_{i=1}^{n} (y_i - O_i)^2 \text{ (mean squared)}$$

Compute $\frac{\partial E}{\partial O_i}$:

$$\frac{\partial E}{\partial O_i} = -(y_i - O_i)$$

6

Compute derivatives in each hidden layer from layer above:

Compute derivative of error w.r.t logit $\frac{\partial E}{\partial Z_{i}} = \frac{\partial E}{\partial O_{i}} \frac{\partial O_{i}}{\partial Z_{i}} = \frac{\partial E}{\partial O_{i}} O_{i}(1 - O_{i}) \text{ (Note: } O_{i} = \frac{1}{1 + e^{-Z_{i}}} \text{)}$

Compute derivative of error w.r.t previous hidden unit

$$\frac{\partial E}{\partial A_j} = \sum_i \frac{\partial Z_i}{\partial A_j} \frac{\partial E}{\partial Z_i} = \sum_i w_{ji} \frac{\partial E}{\partial Z_i}$$

Compute derivative w.r.t. weights

 $\frac{\partial E}{\partial w_{ji}} = \frac{\partial Z_i}{\partial w_{ji}} \frac{\partial E}{\partial Z_i} = O_i \frac{\partial E}{\partial Z_i}$

 \rightarrow Use recursion to do this for every layer

Problems with least squares

1. Poor gradient although **big error** Suppose $Y_i = 1$ and $O_i = 0.00000001 \rightarrow$ Very wrong Least squares:

•
$$E = \frac{1}{2} \sum_{i=1}^{n} (1 - 0.0000001)^2$$
 (mean squared)
 $\rightarrow \frac{\partial E}{\partial O_i} = -(1 - 0.00000001)$
 $\rightarrow \frac{\partial E}{\partial Z_i} = \frac{\partial E}{\partial O_i} * 0.0000001(1 - 0.00000001)$

Suppose $Y_i = 0$ and $O_i = 0.00000001 \rightarrow \text{Quite right}$ Suppose $Y_i = 0$ and $O_i = 0 \rightarrow \text{right}$ Suppose $Y_i = 1$ and $O_i = 1 \rightarrow \text{right}$

Problems with least squares

- 1. Poor gradient although big error
- 2. Mutually exclusive classes
- \rightarrow Probabilities should sum up to 1
- \rightarrow Give the network this information

9

Softmax Unit

Softmax unit:

• applied on output logits

•
$$O_i = \frac{e^{z_i}}{\sum\limits_{j \in K} e^{z_j}}$$

Cross Entropy

Cross Entropy:

$$C = -\sum_{j} y_{j} \log(O_{j})$$

$$\rightarrow \frac{\partial C}{\partial Z_{i}} = \sum_{j} \frac{\partial C}{\partial O_{j}} \frac{\partial O_{j}}{\partial Z_{i}} = O_{i} - y_{i}$$

- Very big gradient when target is 1 and output near 0
- Mutually exclusive classes taken into account

WORD EMBEDDINGS

Word Embeddings

• Representation of words in vector space

Word Embeddings

• Similar words are close to each other

 \rightarrow Similarity is the cosine of the angle between two word vectors

Learning word embeddings

Count-based methods:

- Compute cooccurrence statistics
- Learn high-dimensional representation
- Map sparse high-dimensional vectors to small dense representation

Neural networks:

- Predict a word from its neighbors
- Learn (small) embedding vectors

Word2Vec

Software train word embeddings (Mikolov. 2013)
 → very fast

- Two models:
 - BOW model:
 - ★ Input is is w_{t+2} , w_{t+1} , w_{t-1} and w_{t-2}
 - ★ Prediction is w_t
 - Skip-gram model:
 - ***** Input is w_t
 - ★ Prediction is w_{t+2} , w_{t+1} , w_{t-1} and w_{t-2}

Feedforward Neural Network with Lookup Table

Note: Bias terms omitted for simplicity

Learning word embeddings with CBOW

Note: Bias terms omitted for simplicity

Learning word embeddings with skip-gram

Note: Bias terms omitted for simplicity

BILINGUAL WORD EMBEDDINGS

Bilingual Word Spaces

Representation of words in two languages in same semantic space:

- $\rightarrow\,$ Each word is one dimension
- $\rightarrow\,$ Each word represented respective to all others

Bilingual Word Spaces

Representation of words in two languages in same semantic space:

- $\rightarrow~$ Similar words are close to each other
- $\rightarrow\,$ Given by cosine

How is this related to translation?

Learning Bilingual Word Embeddings

- Learn monolingual word embeddings and map using seed lexicon Mikolov et al. (2013); Faruqui and Dyer (2014); Lazaridou et al. (2015) Need seed lexicon
- Learn bilingual embeddings or lexicon from document-aligned data Vulic and Moens (2015); Vulic and Korhonen (2016) Need document-aligned data
- Learn bilingual embeddings from parallel data Hermann and Blunsom (2014), Gouws et al. (2015), Gouws and Søgaard (2015), Duong et al. (2016) Need for parallel data

Post-hoc mapping (with seed lexicon)

- Learn monolingual word embeddings
- Learn a linear mapping W

Post-hoc mapping

• Project source words into target space

Post-hoc Mapping with seed lexicon

- Train monolingual word embeddings (Word2vec) in English
 Need English monolingual data
- Train monolingual word embeddings (Word2vec) in German
 - Need German monolingual data
- O Learn mapping W using a seed lexicon
 - Need a list of 5000 English words and their translation

Ridge regression (Mikolov et al. (2013))

$$\mathbf{W}^* = \mathop{\arg\min}\limits_{\mathbf{W}} \sum_{i}^{n} \mid\mid \mathbf{x}_i \mathbf{W} - \mathbf{y}_i \mid\mid^2$$

- x_i : embedding of i-th source (English) word in the seed lexicon.
- y_i : **embedding** of i-th target (German) word in the seed lexicon.

- x_i : embedding of i-th source (English) word in the seed lexicon.
- \rightarrow vector representing disease in monolingual word embedding

Ridge regression (Mikolov et al. (2013))

$$\mathbf{W}^* = \mathop{\arg\min}\limits_{\mathbf{W}} \sum_{i}^{n} \mid\mid \mathbf{x}_i \mathbf{W} - \mathbf{y}_i \mid\mid^2$$

- x_i : embedding of i-th source (English) word in the seed lexicon.
- y_i : embedding of i-th target (German) word in the seed lexicon.

 y_i : embedding of i-th target (German) word in the seed lexicon.

 \rightarrow vector representing Krankheit in monolingual word embedding

Ridge regression (Mikolov et al. (2013))

$$W^* = \mathop{\text{arg\,min}}_{W} \sum_i^n \, || \, \textbf{x}_i \cdot W - \textbf{y}_i \, ||^2$$

- \bullet Predict projection y^{*} by computing $x_{i}\cdot W$
- Compute squared error between y^* and y_i
 - Correct translation t_i given in seed lexicon
 - Vector representation y_i is given by embedding of t_i
- Find W such that squared error over training set is minimal

Adding Regularization

If ${\boldsymbol{\mathsf{W}}}$ is too complex the model overfits the data

- \rightarrow Add regularization term that keeps W small
- \rightarrow Add weighted norm of \boldsymbol{W} to cost function

$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{arg\,min}} \sum_{\mathbf{i}}^{\mathbf{n}} || \mathbf{x}_{\mathbf{i}} \cdot \mathbf{W} - \mathbf{y}_{\mathbf{i}} ||^2 + \lambda || \mathbf{W} |$$

Bilingual lexicon induction

- Task to evaluate bilingual word embeddings extrinsically
- Given a set of source words, find the corresponding translations:
 - Given silver, find its vector in the BWE
 - Retrieve the German word whose vector is closest (cosine distance)

Bilingual lexicon induction with ridge regression

Data: WMT 2011 training data for English, Spanish, Czech Seed: 5000 most frequent words translated with Google Translate Test: 1000 next frequent words translated with Google Translate

 $\rightarrow\,$ Removed digits, punctuation and transliterations

Languages	top-1	top-5
En-Es	33 %	51 %
Es-En	35 %	50 %
En-Cz	27 %	47 %
Cz-En	23 %	42 %
+ Es-En	53 %	80 %

 $\rightarrow\,$ with spanish google news

Learning W with Max Margin Ranking

Max-margin ranking loss (Lazaridou et al. (2015)):

- Predict projection y^* by computing $x_i \cdot W$
- Compute ranking loss between:
 - ► y*
 - Vector of correct translation y_i
 - Negative samples y_j

•
$$\sum_{i \neq j}^{k} \max\{0, \gamma + Sdist(\vec{y^*}, \vec{y_i}) - Sdist(\vec{y^*}, \vec{y_j})\}$$

- $Sdist(\vec{x}, \vec{y})$: inverse cosine
- \rightarrow measures semantic distance between $\vec{y^*}$ and $\vec{y_i}$
- γ and k tuned on held-out data

36

Learning W with Max Margin Ranking

Max-margin ranking loss (Lazaridou et al. (2015)):

- $\sum_{i\neq j}^{k} \max\{0, \gamma + Sdist(\vec{y^*}, \vec{y_i}) Sdist(\vec{y^*}, \vec{y_j})\}$
 - $Sdist(\vec{x}, \vec{y})$: inverse cosine
 - \rightarrow measures semantic distance between $\vec{y^*}$ and $\vec{y_i}$
- For each source (English) vector x_i, distance of y^{*} to correct translation y_i should be smaller than distance to wrong translation y_j

Bilingual lexicon induction with max margin ranking

Data: 4 mio sentences from Europarl, News, Common Crawl Seed: 5000 most frequent words-pairs computed with parallel data Test: 1000 next words-pairs computed with parallel data

Setup	top-1	top-5
En-De all	18.6 %	27.4 %
En-De	23.1 %	33.61 %

 $\rightarrow\,$ max-margin outperforms ridge

Building bilingual corpora

Idea:

- Create bilingual corpus and build bilingual word embeddings
- Combine monolingual texts to create bilingual data
- Learn word embeddings with skip-gram or CBOW on bilingual data
 - Simply run word2vec on the bilingual data
 - Just need to create bilingual data

Document Merge and Shuffle

Merge and shuffle document-aligned monolingual data (Vulic and Moens (2015)):

- Document-pairs $P = \{(D_1^S, D_1^T), \dots, (D_n^S, D_n^T)\}$
- Merge each pair (D_i^S, D_i^T) into pseudo-bilingual document B_i
- Shuffle each *B_i*
 - ▶ Random permutation of words w_j in B_i
 - Assures that each word w_j obtains collocates from both languages
- Train word embeddings (word2vec) on pseudo-bilingual document B_i

Building bilingual corpora

English word with bilingual context

Note: Bias terms omitted for simplicity

41

Building bilingual corpora

German word with bilingual context

Note: Bias terms omitted for simplicity

42

Bilingual Word Spaces

Representation of words in two languages in same semantic space:

- $\rightarrow~$ Similar words are close to each other
- $\rightarrow\,$ Given by cosine

Merge and Shuffle with seed lexicon

Merge and shuffle monolingual data with seed lexicon (Gouws and Søgaard (2015)):

- Document-pair $P = (D_1^S, D_1^T)$
 - Merge each pair P into pseudo-bilingual document B

► Shuffle *B*

- Seed lexicon $S = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Each y_i is translation of x_i
 - In bilingual document *B* replace each x_i with y_i with proba 0.5
 - Allows to consider k translations of x_i and draw with proba $\frac{0.5}{k}$

Bilingual lexicon induction

- Task to evaluate bilingual word embeddings extrinsically
- Merge and shuffle document-aligned monolingual data (Vulic and Moens (2015))
- A bit worse than post-hoc mapping with ridge regression
- Merge and shuffle monolingual data with seedLexicon (Gouws and Søgaard (2015))
- Evaluated on cross-lingual POS tagging

RECURRENT NEURAL NETWORKS

Neural language model

• Early application of neural networks (Bengio et al. 2003)

- Task: Given k previous words, predict the current word Estimate: P(w_t|w_{t-k}, · · · , w_{t-2}, w_{t-1})
- Previous (non-neural) approaches:

Problem: Joint distribution of consecutive words difficult to obtain \rightarrow chose small history to reduce complexity (n=3)

 \rightarrow predict for unseen history through back-off to smaller history

Drawbacks:

Takes into account small and fixed context Does not model similarity between words

Neural language model

- Early application of neural networks (Bengio et al. 2003)
- Task: Given k previous words, predict the current word Estimate: P(w_t|w_{t-k}, · · · , w_{t-2}, w_{t-1})
- Feedforward NN for LM:

Does model similarity between words Restricted to small and fixed context

Neural language model

Take into account context of any size:

- Need a way to model sequentiality
- Introduce notion of time in neural network
 - \rightarrow Recurrent Neural Networks

Recurrent Neural Networks

Connection between hidden states

 \rightarrow connections between time units, models sequentiality

Recurrent Neural Networks

Input weights U are **shared** among each time step Output weights V are **shared** among each time step

 \rightarrow Less parameters as in feedworward NN with many layers

Input embeddings passed forward through time Each hidden unit is one time step

 \rightarrow Acts as memory of what happened before

Specify initial state A₀:

Input layer (X): Word features LT^{t} Weight matrices U, R, V Time Step (A^{t}): $\sigma(LT^{t} \cdot U + A^{t-1} \cdot R + d)$ Output layer (0^{t}): $A^{t} \cdot V + b$ Prediction: $h^{t}(X) = softmax(0^{t})$

Compute prediction for each time step Apply softmax on each output

Compute prediction for one time step

Apply softmax on last output \rightarrow Language model architecture

Goal of training: adjust weights such that correct label is predicted

 \rightarrow Error between correct label and prediction is minimal

Sketch:

- Compute derivative of Error w.r.t. prediction
- Compute derivatives in each hidden layer from layer above
 - Backpropagate the error derivative with respect to the output of a unit
- Use derivatives w.r.t the activities to get error derivatives w.r.t incomming weights

Sketch:

- Compute derivative of Error w.r.t. prediction
- Compute derivatives from layer above and previous time step
 - \rightarrow Each time step can be represented by a feedforward neural network
 - \rightarrow Shared connections represented by constrained weights (same)
 - \rightarrow Sum derivatives over each time step

- \rightarrow Each time step can be represented by a feedforward neural network
- \rightarrow Here feedforward neural network for time step 3

Sketch:

- Compute derivative of Error w.r.t. prediction
- Compute derivatives from layer above and previous time step
 - \rightarrow Each time step can be represented by a feedforward neural network
 - \rightarrow Shared connections represented by constrained weights (same)
 - \rightarrow Sum derivatives over each time step

Difficulties:

- Multiply many derivatives together
 - \rightarrow Gradients tend to explode or vanish

LSTM handle this

- LSTM for Long Short Term Memory Network
- Improve memory capacity of hidden states Will be presented next week!

Recap

- Squared error not good loss function
 - Softmax units with cross-entropy
- Bilingual word embeddings represent words in two languages
- Induction with post-hoc mapping:
 - Train monolingual word embeddings
 - Map with seed lexicon
- Induction with bilingual corpora:
 - Create bilingual corpora
 - Train monolingual word embeddings

61

Recap

Recurrent neural networks for language modeling:

- Task: Given k previous words, predict the current word
 Estimate: P(w_t|w_{t-k}, · · · , w_{t-2}, w_{t-1})
- Problems with feedforward approach

 \rightarrow chose fixed history to reduce complexity

- Recurrent neural networks as solution
 - Model sequentiality with recurrent units
 - Allow to model history of any size

References I

- Duong, L., Kanayama, H., Ma, T., Bird, S., and Cohn, T. (2016). Learning crosslingual word embeddings without bilingual corpora. In *Proc. EMNLP*.
- Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using multilingual correlation. In *Proc. EACL*.
- Gouws, S., Bengio, Y., and Corrado, G. (2015). Bilbowa: Fast bilingual distributed representations without word alignments. In *Proc. ICML*.
- Gouws, S. and Søgaard, A. (2015). Simple task-specific bilingual word embeddings. In *Proc. NAACL*.
- Hermann, K. M. and Blunsom, P. (2014). Multilingual models for compositional distributed semantics. In *Proc. ACL*, pages 58–68, Baltimore, Maryland. Association for Computational Linguistics.
- Lazaridou, A., Dinu, G., and Baroni, M. (2015). Hubness and pollution: Delving into cross-space mapping for zero-shot learning. In *Proc. ACL*.

63

References II

- Mikolov, T., Le, Q. V., and Sutskever, I. (2013). Exploiting similarities among languages for machine translation. *CoRR*, abs/1309.4168.
- Vulic, I. and Korhonen, A. (2016). On the Role of Seed Lexicons in Learning Bilingual Word Embeddings. In Proc. ACL, pages 247–257.
- Vulic, I. and Moens, M. (2015). Bilingual word embeddings from non-parallel document-aligned data applied to bilingual lexicon induction. In *Proc. ACL*.

Recurrent Neural Networks

Can be bidirectional

