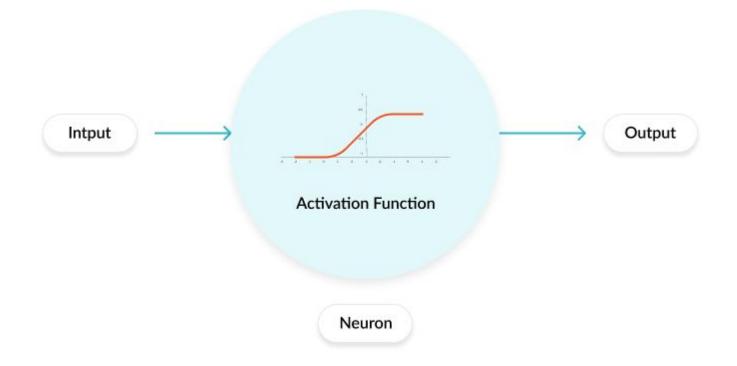

Neural Networks, etc.

Denis Peskov dpeskov@cs.umd.edu LMU 5.26.20


- 1.Activation functions
- 2. Training of neural networks
- 3.Recurrent networks
- 4.LSTM

Training a Neural Network

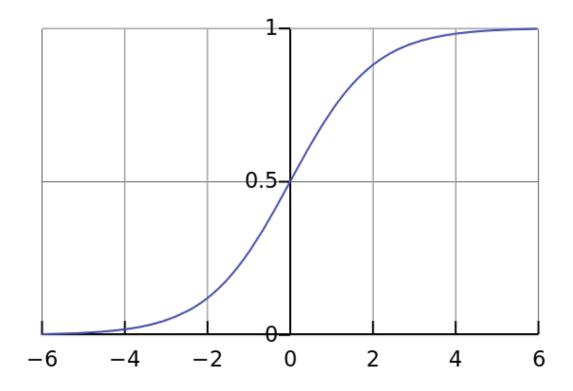
- •Neurons
- Loss Function
- Backpropogation
- Pragmatics

The Base Level: Neuron

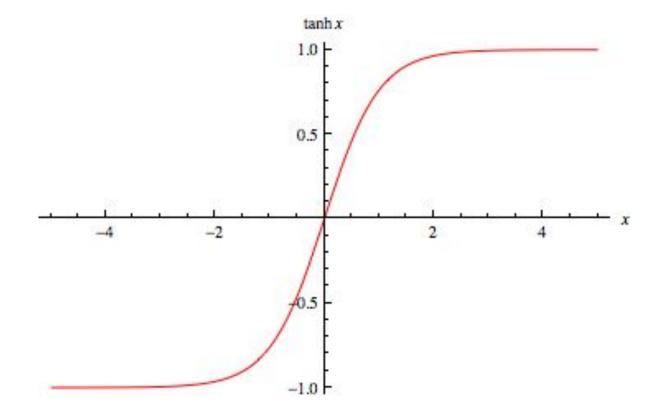
Activation Function

Obvious:

Linear: A = cx


But:

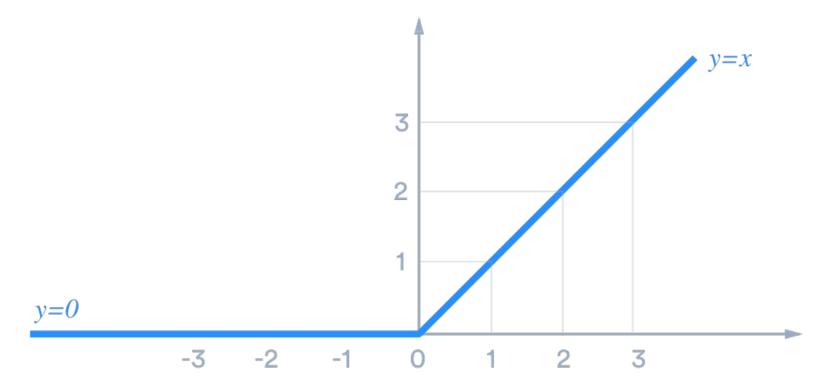
1. Derivative is constant


2. Stacking layers no longer works

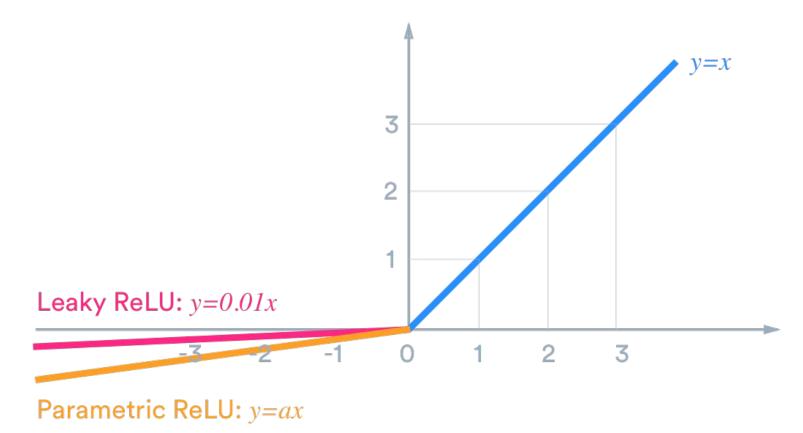
So we need **nonlinear** activation functions.

sigmoid() (and softmax)

tanh() (zero-centered)

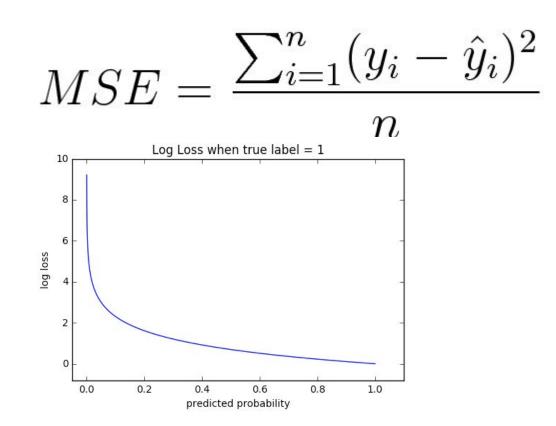

Vanishing Gradient

Gradient Descent is used for training Neural Networks


$o(x) = f_n(f_{n-1}(...,f_1(x)))$

Multiplying values < 1 across multiple layers causes **VANISHING GRADIENT**

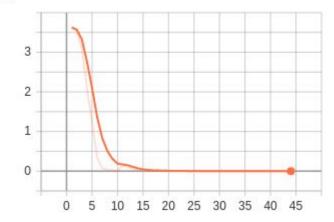
Avoid Vanishing Gradient with ReLu


Avoiding "dying neurons": Leaky ReLU

Loss Function

Mean Squared Error:

Cross Entropy Loss:

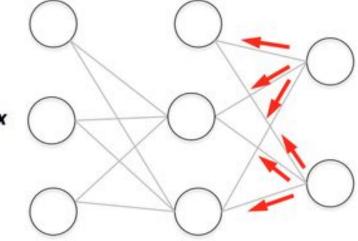


How to use loss?

Train your network while loss is decreasing.

Perfect probability = loss of 0.

loss



Loss isn't very intuitive. Better to use accuracy or other metric.

Backpropogation

- 1. Forward pass
- 2. Error Calculation
- 3. Backwards Pass

How are Neural Networks Trained in Practice?

Data

• Large!

Tools

- PyTorch
- AllenNLP

Hardware

• GPUs (and even TPUs)

Neural Network Data

- 1. Neural networks often have thousands of parameters.
- 2. Law of large numbers avoids data inconsistency.
- 3. Beware of biases.
- 4. On **small** datasets in my own work, *I've* personally had close results with logistic regression models.

Where do you get data?

- Internet
- Books
- Crowd-Sourcing
- Artificial modifications
- Specialized Communities

But how do you guarantee quality?

- Interannotator Agreement
- Think about biases:
 - Label: you only learn what's in the training data
 - Language: skewed towards popular languages
 - Text: text data requires less space than audio/video data and can be older
- Visualization

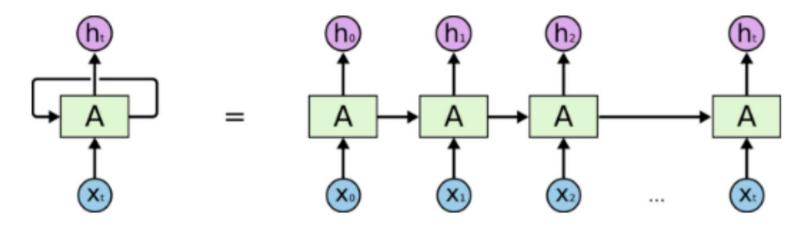
But what about language?

Neural Networks were a big leap in accuracy for **VISION**. Pixels were high in dimensionality, and difficult to interpret.

Human interpretable

Levels:

- 1. Character
- 2. Word
- 3. Phrase/Sentence
- 4. Document


Context Matters

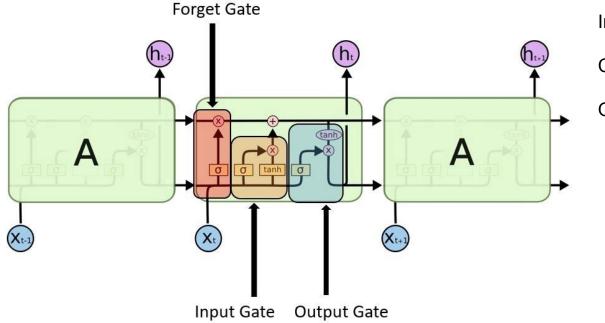
DETECT LANGUAGE	GERMAN	ENGLISH	SPANISH	\sim	←→	ENGLISH	GERMAN	SPANISH	\sim			
Ich verstehe nur Bahnhof				\times I only understand train station						☆		
4)				24/5000	•	4)					Sand	∽ I feedback
DETECT LANGUAGE	GERMAN	ENGLISH	SPANISH	~	, ↓	ENGLISH	GERMAN	SPANISH	~		Senu	Teeuback
Das ist mir Wurst				×	It does not matter to me \oslash				\$			
-()				17/5000	•	•()					0	Ş

Pragmatics

- 1. Train/ Development/ Test splits
- 2. Batching
- 3. Random seed
- 4. Reasonable Significant Digits
- 5. Drop out data during training
- 6. Initialization
- 7. Human baselines & common sense
- 8. Monitor training loss

Recurrent Neural Networks (RNN)

An unrolled recurrent neural network.


Limitations

$h_t = f(h_{t-1}, x_t)$ $h_t = tanh (W_{hh}h_{t-1} + W_{xh}x_t)$

W is *weight*, **h** is the *single hidden vector*, **Whh** is *the weight at previous hidden state*, **Whx** is the *weight at current input state*, **tanh** is the *Activation funtion*, that implements a Non-linearity that squashes the activations to the range[-1.1]

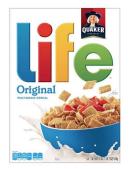
- Vanishing Gradient Losing Long Term Information
- Computation

Add Gates: Long Short-Term Memory (LSTM)

Input: Is this relevant?

Cell State: What to add?

Output: Where to send next?

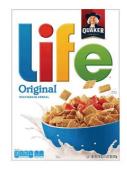

Customers Review 2,491

Thanos

September 2018 Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

A Box of Cereal \$3.99

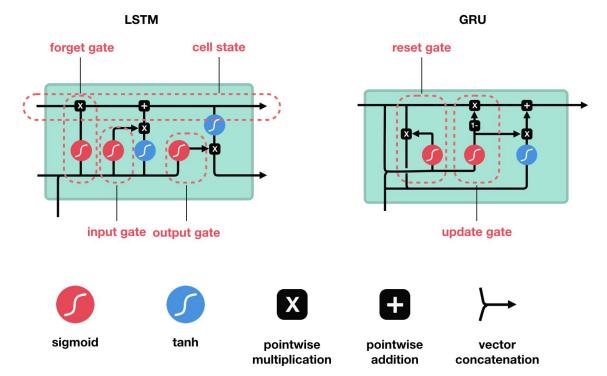

Customers Review 2,491

Thanos

September 2018 Verified Purchase

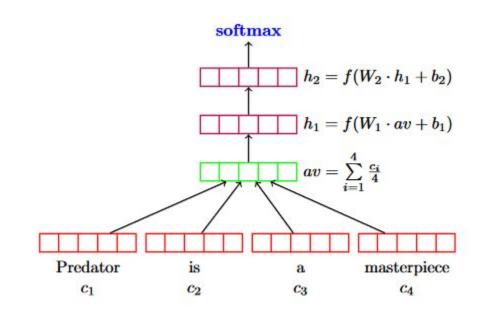
Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

A Box of Cereal \$3.99 What's the connection to LANGUAGE?


Language is:

Dependent on overall context

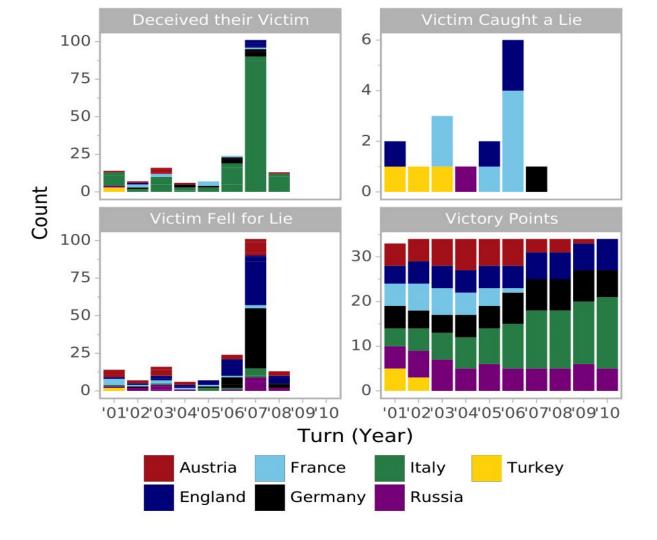
Often short-term sequential


Other Variation: GRU

Optimizing the memory by forgetting leads to a Gradient Recurrent Unit (GRU)

Other Variation: DAN

Dropping word order leads to a Deep Averaging Network (DAN)


Anecdotal Applications of LSTMs

Scoping Information Loss

Role	Turn	Annotations
Α	Hey there! Good morning. You're connected to LMT Airways.	DA = { elicitgoal }
	How may I help you?	
С	Hi, I wonder if you can confirm my seat assignment on my flight	IC = { SeatAssignment }
4	tomorrow?	
Α	Sure! I'd be glad to help you with that. May I know your last name	$DA = \{ elicitslot \}$
	please?	
С	My last name is Turker.	IC = $\{ \text{ contentonly } \},\$
		SL = {Name : Turker }
Α	Alright Turker! Could you please share the booking confirmation	$DA = \{ elicitslot \}$
	number?	
С	I believe it's AMZ685.	IC = $\{ \text{ contentonly } \},\$
		SL = { Confirmation Number : AMZ685 }

Table 1: A segment of a dialogue from the airline domain annotated at the turn level. This data is annotated with agent dialogue acts (DA), customer intent classes (IC), and slot labels (SL). Roles C and A stand for "Customer" and "Agent", respectively.

High Level Questions?

Image citations

Neuron: https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

https://towardsdatascience.com/power-of-a-single-neuron-perceptron-c418ba445095

NN:https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285 bc2be3a

Sigmoid: <u>https://en.wikipedia.org/wiki/Sigmoid_function#/media/File:Logistic-curve.svg</u>

Tanh: https://mathworld.wolfram.com/HyperbolicTangent.html

Relu: https://medium.com/@sonish.sivarajkumar/relu-most-popular-activation-function-for-deep-neural-networks-10160af37dda

Leaky Relu:

https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e

RNNs, LSTMS: https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

GRUs: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

DAN: https://mlexplained.com/2018/05/11/paper-dissected-deep-unordered-composition-rivals-syntactic-methods-for-text-classification-explained/