Statistical Machine Translation: Decoding

Alexander Fraser (Many slides from Aleš Tamchyna, Philipp Koehn) fraser@cis.uni-muenchen.de

May 5, 2021

Outline

- What features are used in PBMT?
- How to compute the score of a translation?
- Search for the best translation: decoding.
 - Overview of the translation process.
 - Making decoding tractable: beam search.
- Other decoding algorithms.

We know how to score a full translation hypothesis:

$$P(e, a|f) \propto \exp \sum_{i} \lambda_i f_i(e, a, f)$$

 $\lambda_i \dots$ feature weights $f_i \dots$ feature functions

Log-Linear Model: Features

Typical baseline feature set for PBMT:

Phrase translation probability, both direct and inverse:

 $P_{TM}(e|f) \\ P_{TM_{inv}}(f|e)$

Lexical translation probability (direct and inverse):

$$P_{lex}(e|f) P_{lex_{inv}}(f|e)$$

Language model probability:

► *P*_{LM}(*e*)

- Phrase penalty.
- Word penalty.
- Distortion penalty.

The problem: many extracted phrases are rare. (Esp. long phrases might only be seen once in the parallel corpus.)

The problem: many extracted phrases are rare. (Esp. long phrases might only be seen once in the parallel corpus.)

P(" modrý autobus přistál na Marsu" |" a blue bus lands on Mars") = 1<math>P(" a blue bus lands on Mars" |" modrý autobus přistál na Marsu") = 1

Is that a reliable probability estimate?

The problem: many extracted phrases are rare. (Esp. long phrases might only be seen once in the parallel corpus.)

> P("; distortion carried - over" |"; zkresleni") = 1P("; zkresleni" |"; distortion carried - over") = 1

Data from the "wild" are noisy. Word alignment contains errors. "carried - over" is wrong.

This is a real phrase pair from a very good English-Czech SMT system.

Both $P_{TM}(e|f)$ and $P_{TM_{inv}}(f|e)$ say that this is a perfect translation.

Decompose the phrase pair into word pairs. Look at the word-level translation probabilities.

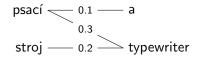
Decompose the phrase pair into word pairs. Look at the word-level translation probabilities.

Decompose the phrase pair into word pairs. Look at the word-level translation probabilities.

$${{P}_{lex}}(\mathsf{e}|\mathsf{f},\mathsf{a}) = \prod_{j=1}^{l_e} rac{1}{|i|(i,j)\in \mathsf{a}|} \sum_{orall (i,j)\in \mathsf{a}} w(e_j,f_i)$$

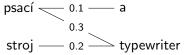
Decompose the phrase pair into word pairs. Look at the word-level translation probabilities.

$$\mathcal{P}_{lex}(\mathsf{e}|\mathsf{f},\mathsf{a}) = \prod_{j=1}^{l_e} rac{1}{|i|(i,j) \in \mathsf{a}|} \sum_{orall (i,j) \in \mathsf{a}} w(e_j,f_i)$$



Decompose the phrase pair into word pairs. Look at the word-level translation probabilities.

$$P_{lex}(\mathsf{e}|\mathsf{f},\mathsf{a}) = \prod_{j=1}^{l_e} \frac{1}{|i|(i,j) \in \mathsf{a}|} \sum_{\forall (i,j) \in \mathsf{a}} w(e_j, f_i)$$



$$P_{lex}$$
("a typewriter" |"psací stroj") = $\left[\frac{1}{1} \cdot 0.1\right] \cdot \left[\frac{1}{2} \cdot (0.3 + 0.2)\right] = 0.025$

Not all languages use the same number of words on average.

Not all languages use the same number of words on average.

vidím problém ||| I can see a problem

▶ We want to control how many words are generated.

Not all languages use the same number of words on average.

- ▶ We want to control how many words are generated.
- Word penalty simply adds 1 for each produced word in the translation.

Not all languages use the same number of words on average.

- We want to control how many words are generated.
- Word penalty simply adds 1 for each produced word in the translation.
- Depending on the λ for word penalty, we will either generate shorter or longer outputs.

Not all languages use the same number of words on average.

- We want to control how many words are generated.
- Word penalty simply adds 1 for each produced word in the translation.
- Depending on the \(\lambda\) for word penalty, we will either generate shorter or longer outputs.

$$\hat{e} = rgmax_{e,a} \sum_{i} \lambda_i f_i(e, a, f)$$

Phrase Penalty

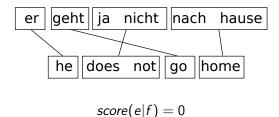
Add 1 for each produced *phrase* in the translation.

Phrase Penalty

- Add 1 for each produced *phrase* in the translation.
- Varying the λ for phrase penalty can lead to more literal (word-by-word) translations (made from a lot of short phrases) or to more idiomatic outputs (use fewer, longer phrases – if available).

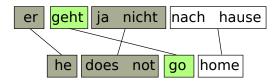
Distortion Penalty

- The simplest way to capture phrase reordering.
- Can be sufficient for some language pairs
- Several possible definitions!
- Definition I tend to use:
 - Distance between the end of the previous phrase (on the source side) and the beginning of the current phrase.

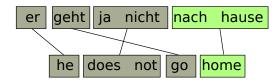


$$score(e|f) + = \lambda_{TM} \cdot \log P_{TM}("he" |"er") \\ + \lambda_{TM_{inv}} \cdot \log P_{TM_{inv}}("er" |"he") \\ + \lambda_{lex} \cdot \log P_{lex}("he" |"er") \\ + \lambda_{lex_{inv}} \cdot \log P_{lex_{inv}}("er" |"he") \\ + \lambda_{D} \cdot 0 \\ + \lambda_{WP} \cdot 1 \\ + \lambda_{PP} \cdot 1 \\ + \lambda_{LM} \cdot \log P_{LM}("he" |" < S > ")$$

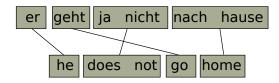
 $score(e|f) + = \lambda_{TM} \cdot \log P_{TM}("\text{ does not"} |"\text{ ja nicht"}) \\ + \lambda_{TM_{inv}} \cdot \log P_{TM_{inv}}("\text{ ja nicht"} |"\text{ does not"}) \\ + \lambda_{lex} \cdot \log P_{lex}("\text{ does not"} |"\text{ ja nicht"}) \\ + \lambda_{lex_{inv}} \cdot \log P_{lex_{inv}}("\text{ ja nicht"} |"\text{ does not"}) \\ + \lambda_D \cdot 1 \\ + \lambda_{WP} \cdot 2 \\ + \lambda_{PP} \cdot 1 \\ + \lambda_{LM} \cdot \log P_{LM}("\text{ does not"} |" < S > he")$



$$score(e|f) + = \lambda_{TM} \cdot \log P_{TM}("go"|"geht") \\ + \lambda_{TM_{inv}} \cdot \log P_{TM_{inv}}("geht"|"go") \\ + \lambda_{lex} \cdot \log P_{lex}("go"|"geht") \\ + \lambda_{lex_{inv}} \cdot \log P_{lex_{inv}}("geht"|"go") \\ + \lambda_D \cdot 3 \\ + \lambda_{WP} \cdot 1 \\ + \lambda_{PP} \cdot 1 \\ + \lambda_{LM} \cdot \log P_{LM}("go"|"does not")$$



 $score(e|f) + = \dots$



 $score(e|f) + = \dots$

Decoding

• We have a mathematical model for translation

$p(\mathbf{e}|\mathbf{f})$

 \bullet Task of decoding: find the translation \mathbf{e}_{best} with highest probability

 $\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \; p(\mathbf{e}|\mathbf{f})$

- Two types of error
 - the most probable translation is bad \rightarrow fix the model
 - search does not find the most probably translation \rightarrow fix the search
- Decoding is evaluated by search error, not quality of translations (although these are often correlated)

Slide by Philipp Koehn (Statistical Machine Translation, Chapter 6)

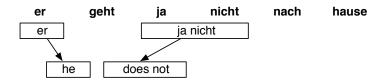
- Task: translate this sentence from German into English
 - er geht ja nicht nach hause

Slide by Philipp Koehn (Statistical Machine Translation, Chapter 6)

• Task: translate this sentence from German into English

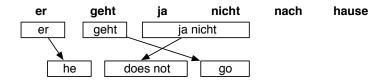
• Pick phrase in input, translate

• Task: translate this sentence from German into English



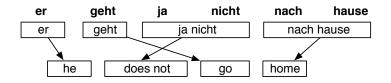
- Pick phrase in input, translate
 - it is allowed to pick words out of sequence reordering
 - phrases may have multiple words: many-to-many translation

• Task: translate this sentence from German into English



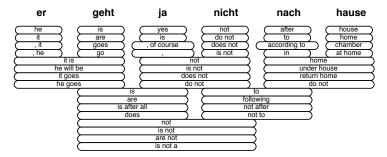
• Pick phrase in input, translate

• Task: translate this sentence from German into English



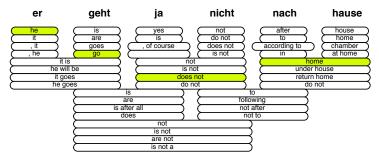
• Pick phrase in input, translate

Translation Options



- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation Options



- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- $\rightarrow\,$ Search problem solved by heuristic beam search

Decoding: Precompute Translation Options

consult phrase translation table for all input phrases

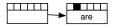
Slide by Philipp Koehn (Statistical Machine Translation, Chapter 6)

Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced

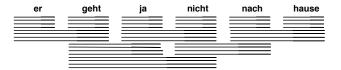
Slide by Philipp Koehn (Statistical Machine Translation, Chapter 6)

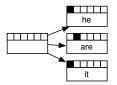
Decoding: Hypothesis Expansion



pick any translation option, create new hypothesis

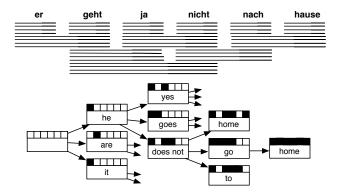
Decoding: Hypothesis Expansion





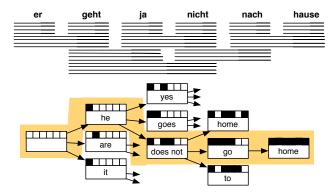
create hypotheses for all other translation options

Decoding: Hypothesis Expansion



also create hypotheses from created partial hypothesis

Decoding: Find Best Path



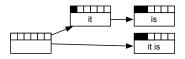
backtrack from highest scoring complete hypothesis

Computational Complexity

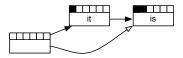
- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)

Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

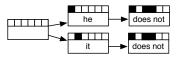


• Worse hypothesis is dropped

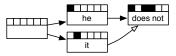


Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores



• Worse hypothesis is dropped

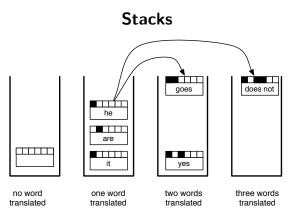


Restrictions on Recombination

- Translation model: Phrase translation independent from each other \rightarrow no restriction to hypothesis recombination
- Language model: Last n-1 words used as history in n-gram language model \rightarrow recombined hypotheses must match in their last n-1 words
- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase
 - \rightarrow recombined hypotheses must have that same end position
- Other feature function may introduce additional restrictions

Pruning

- Recombination reduces search space, but not enough (we still have a NP complete problem on our hands)
- Pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks (hypotheses that have translated same number of input words)
 - limit number of hypotheses in each stack



- Hypothesis expansion in a stack decoder
 - translation option is applied to hypothesis
 - new hypothesis is dropped into a stack further down

Stack Decoding Algorithm

1:	place empty hypothesis into stack 0
2:	for all stacks $0n - 1$ do
3:	for all hypotheses in stack do
4:	for all translation options do
5:	if applicable then
6:	create new hypothesis
7:	place in stack
8:	recombine with existing hypothesis if possible
9:	prune stack if too big
10:	end if
11:	end for
12:	end for
13:	end for

Pruning

- Pruning strategies
 - histogram pruning: keep at most \boldsymbol{k} hypotheses in each stack
 - stack pruning: keep hypothesis with score α imes best score (lpha < 1)
- Computational time complexity of decoding with histogram pruning

 $O(\max \text{ stack size} \times \text{ translation options} \times \text{ sentence length})$

• Number of translation options is linear with sentence length, hence:

 $O(\max \text{ stack size} \times \text{ sentence length}^2)$

• Quadratic complexity

Reordering Limits

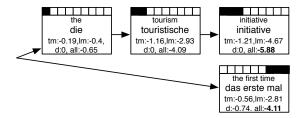
- Limiting reordering to maximum reordering distance
- Typical reordering distance 5-8 words
 - depending on language pair
 - larger reordering limit hurts translation quality
- Reduces complexity to linear

 $O({\rm max \ stack \ size} \times {\rm sentence \ length})$

 $\bullet\,$ Speed / quality trade-off by setting maximum stack size

Translating the Easy Part First?

the tourism initiative addresses this for the first time

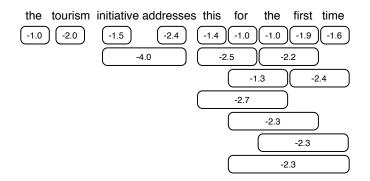


both hypotheses translate 3 words worse hypothesis has better score

Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
 - language model: output words known, but not context
 - \rightarrow estimate without context
 - reordering model: unknown, ignored for future cost estimation

Cost Estimates from Translation Options



cost of cheapest translation options for each input span (log-probabilities)

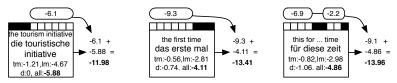
Cost Estimates for all Spans

• Compute cost estimate for all contiguous spans by combining cheapest options

first	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		-
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1			
this	-1.4	-2.4	-2.7	-3.7	-3.7				
for	-1.0	-1.3	-2.3	-2.3					
the	-1.0	-2.2	-2.3						
first	-1.9	-2.4							
time	-1.6								

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

Combining Score and Future Cost

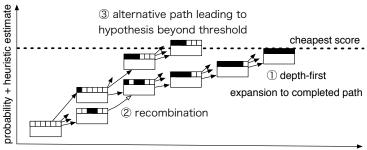


- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost: -6.1 \rightarrow total cost -11.98
 - middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 \rightarrow total cost -13.41
 - right hypothesis picks easy parts: this for ... time score: -4.86, future cost: -9.1 \rightarrow total cost -13.96

Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)

A* Search



number of words covered

- Uses admissible future cost heuristic: never overestimates cost
- $\bullet\,$ Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created

Greedy Hill-Climbing

- Create one complete hypothesis with depth-first search (or other means)
- Search for better hypotheses by applying change operators
 - change the translation of a word or phrase
 - combine the translation of two words into a phrase
 - split up the translation of a phrase into two smaller phrase translations
 - move parts of the output into a different position
 - swap parts of the output with the output at a different part of the sentence
- Terminates if no operator application produces a better translation

Finite-state transducers

- It is also possible to output a pruned search graph to an external finite-state transducer package.
- This then carries out the search, but I will omit the details of this.
- Allows efficient search of this (pruned) graph
- Can be useful for rescoring the hypotheses using models that are difficult to implement directly in, e.g., Moses.

Summary

- Log-linear model: standard features in PBMT.
- Computing the score of a translation.
- Overview of the translation process.
- Beam search algorithm.
 - Hypothesis recombination.
 - Pruning.
 - Limiting distortion.
 - Future cost.
- Other decoding algorithms.

Questions?

Thank you for your attention.