Training NNs and RNNs

Alexander Fraser

(Slides originally from Denis Peskov)

SS 2023

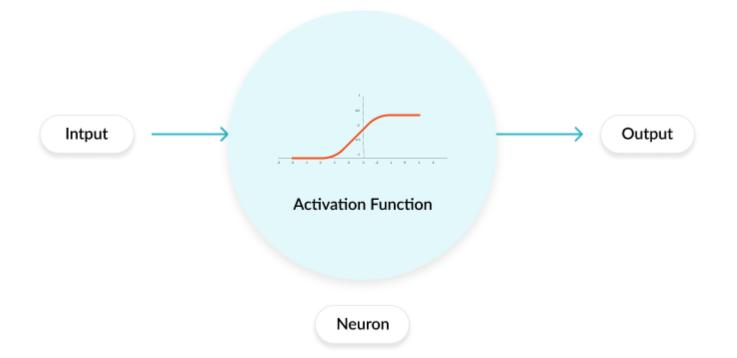
Topics

- **1**.Activation functions
- 2. Training of neural networks
- 3.Recurrent networks
- 4.Subword tokenization (BPE)

Training a Neural Network

- •Neurons
- Activation Functions
- Loss Functions
- Backpropogation
- Pragmatics

The Base Level: Neuron



Source: Missinglink.ai: 7 types of neural network activation functions (2019)

Activation Function

Obvious:

Linear: A = cx

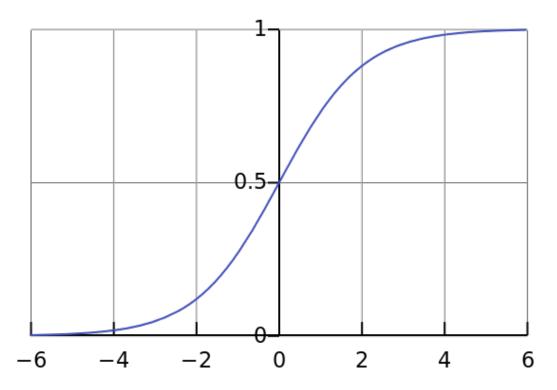
But:

1. Derivative is constant

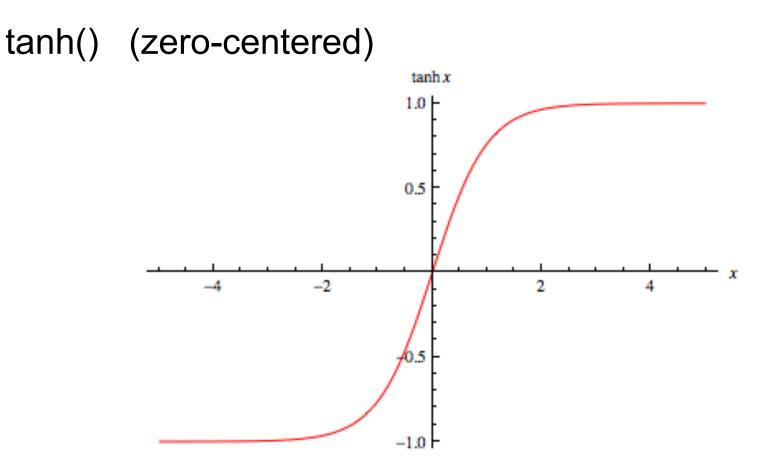
2. Stacking layers no longer works

So we need **nonlinear** activation functions

```
sigmoid() (and softmax)
```



Sigmoid: https://en.wikipedia.org/wiki/Sigmoid_function



Tanh: https://mathworld.wolfram.com/

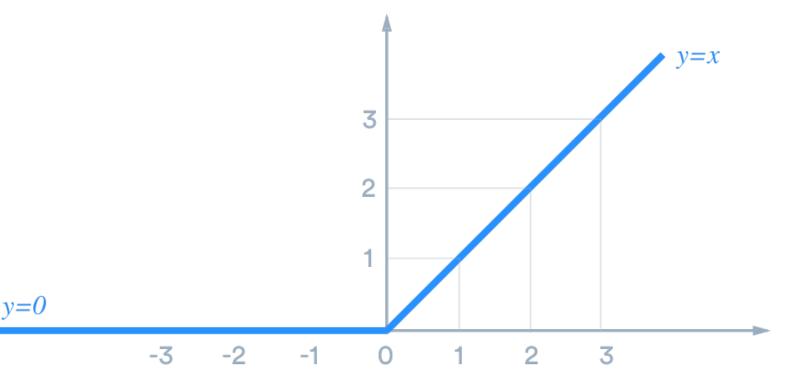
Vanishing Gradient

Gradient Descent is used for training Neural Networks

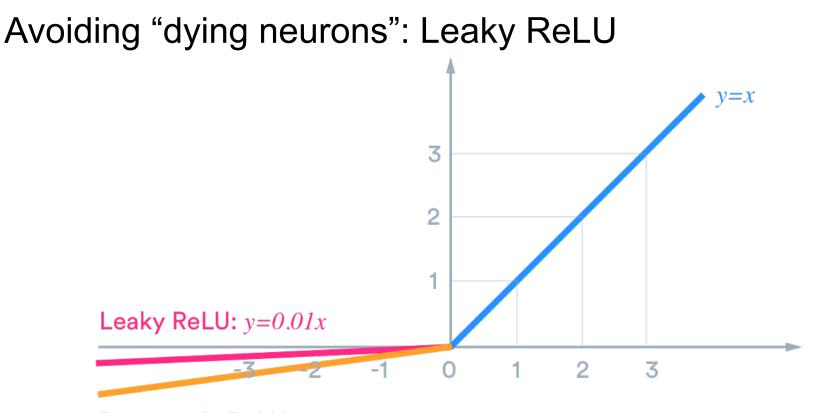
$o(x) = f_n(f_{n-1}(...,f_1(x)))$

Multiplying values < 1 across multiple layers causes **VANISHING GRADIENT**

Avoid Vanishing Gradient with ReLU



Activation Functions: Sigmoid, ReLU, Leaky ReLU and Softmax basics for Neural Networks and Deep Learning. Himanshu S. Jan 19, 2019.



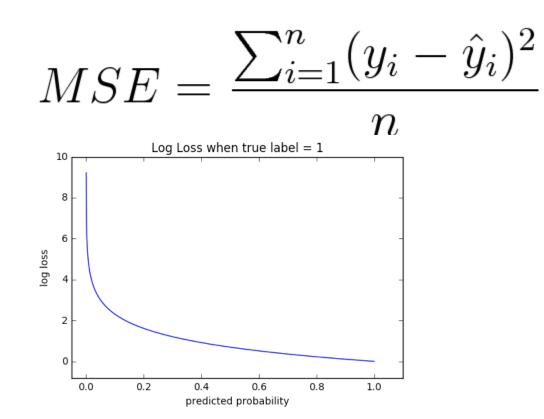
Parametric ReLU: *y=ax*

Activation Functions: Sigmoid, ReLU, Leaky ReLU and Softmax basics for Neural Networks and Deep Learning. Himanshu S. Jan 19, 2019.

Loss Function

Mean Squared Error:

Cross Entropy Loss:



https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html (ML Cheatsheet 2020)

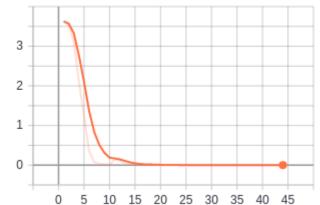
How to use loss?

Train your network while loss is decreasing.

Perfect probability = loss of 0.

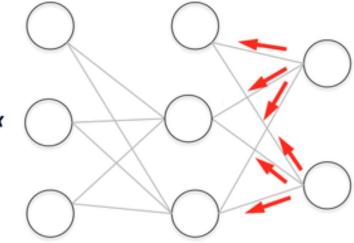
loss

Loss isn't very intuitive. Better to report train accuracy or similar.



Backpropagation

- 1. Forward pass
- 2. Error Calculation
- 3. Backwards Pass



How are Neural Networks Trained in Practice (NLP)?

Data

• Large!

Tools

- PyTorch
- AllenNLP

Hardware

• GPUs (and even TPUs)

Neural Network Data for NLP

- 1. Neural networks often have thousands of parameters.
- 2. Law of large numbers avoids data inconsistency.
- 3. Beware of biases.
- 4. Denis Peskov: on **small** datasets in my own work, *I've* personally had close results with logistic regression models.
- 5. But in machine translation, logistic regression is not usually an option

Where do you get NLP data?

- Internet
- Books
- Crowd-Sourcing
- Artificial modifications
- Specialized Communities

But how do you guarantee quality of NLP data?

- Interannotator Agreement
- Think about biases:
 - Label: you only learn what's in the training data
 - Language: skewed towards popular languages
 - Text: text data requires less space than audio/video data and can be older
- Visualization

But what about language?

Neural Networks were a big leap in accuracy for **VISION**. Pixels were high in dimensionality, and difficult to interpret.

Human interpretable

Levels:

- 1. Character
- 2. Word
- 3. Phrase/Sentence
- 4. Document

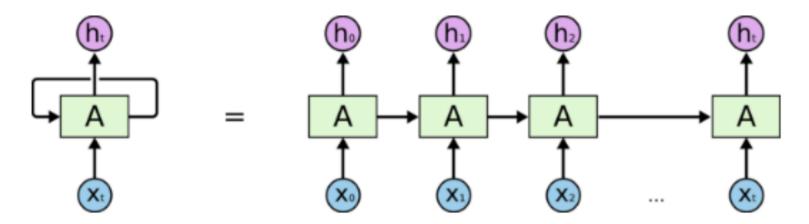
Context Matters

DETECT LANGUAGE GERMAN ENGLISH SPAN	ISH ✓ ↔ ENGLISH GERMAN SPANISH ✓	
Ich verstehe nur Bahnhof	× I only understand train station	\$
4)	24/5000	D C <
DETECT LANGUAGE GERMAN ENGLISH SPAN	ISH ✓ ← ENGLISH GERMAN SPANISH ✓	
Das ist mir Wurst	$ imes$ It does not matter to me $ \oslash $	Å
4)	17/5000 📼 🔹 🌒	

Pragmatics

- 1. Train/ Development/ Test splits
- 2. Batching
- 3. Random seed
- 4. Reasonable Significant Digits
- 5. Drop out data during training
- 6. Initialization
- 7. Human baselines & common sense
- 8. Monitor training loss

Recurrent Neural Networks (RNN)



An unrolled recurrent neural network.

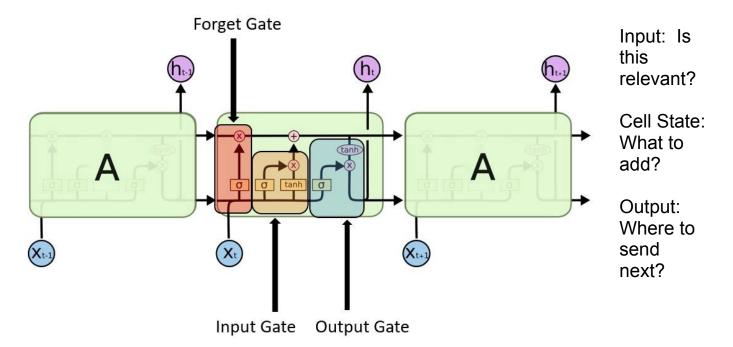
Understanding RNN and LSTM. Aditi Mittal, Medium, 2020. https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e

Limitations

$h_t = f(h_{t-1}, x_t)$ $h_t = tanh (W_{hh}h_{t-1} + W_{xh}x_t)$

- W is weight, h is the single hidden vector, W_{hh} is the weight at previous hidden state,
 W_{xh} is the weight at current input state, tanh is the Activation function, which implements a non-linearity that squashes the activations to the range [-1, 1]
- Vanishing Gradient Losing Long Term Information
- Computation

Add Gates: Long Short-Term Memory (LSTM)



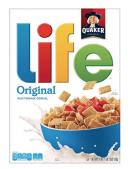
Understanding RNN and LSTM. Aditi Mittal, Medium, 2020. https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e

Customers Review 2,491

September 2018

Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!



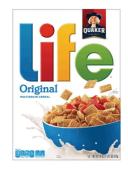
A Box of Cereal \$3.99

Customers Review 2,491

Thanos

September 2018 Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!



A Box of Cereal \$3.99 What's the connection to LANGUAGE?

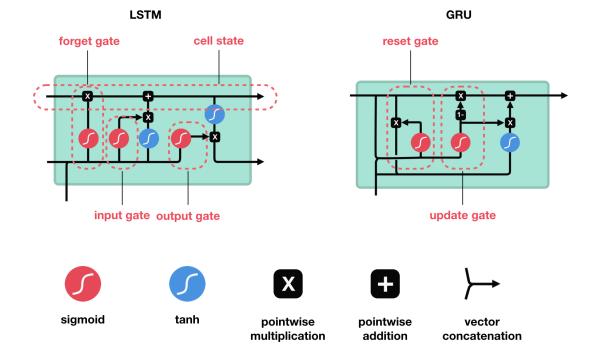
Language is both:

Dependent on overall context

Often short-term sequential

Other Variation: GRU

Optimizing the memory by forgetting leads to a Gated Recurrent Unit (GRU)



Michael Phi (2018). An Illustrated Guide to LSTMs and GRUs, a step-by-step explanation.

Role	Turn	Annotations
Α	Hey there! Good morning. You're connected to LMT Airways.	DA = { elicitgoal }
	How may I help you?	
С	Hi, I wonder if you can confirm my seat assignment on my flight	IC = { SeatAssignment }
	tomorrow?	
Α	Sure! I'd be glad to help you with that. May I know your last name	$DA = \{ elicitslot \}$
	please?	
С	My last name is Turker.	IC = $\{ \text{ contentonly } \},\$
		SL = {Name : Turker }
А	Alright Turker! Could you please share the booking confirmation	$DA = \{ elicitslot \}$
	number?	
С	I believe it's AMZ685.	IC = $\{ \text{ contentonly } \},\$
		SL = { Confirmation Number : AMZ685 }
		•••

Table 1: A segment of a dialogue from the airline domain annotated at the turn level. This data is annotated with agent dialogue acts (DA), customer intent classes (IC), and slot labels (SL). Roles C and A stand for "Customer" and "Agent", respectively.

Peskov et al (2019). Multi-Domain Goal-Oriented Dialogues (MultiDoGO). EMNLP

Subword Tokenization

- MT systems can have large vocabularies, but this requires large amounts of RAM.
- There is also the problem of OOV (out of vocabulary) words
- Both of these were solved for Neural Machine Translation by Sennrich, Haddow, Birch in 2016
- The critical idea is to split words into known subwords as a preprocessing step used at both training
 and test time

BPE, Wordpiece, Unigram

- Sennrich et al's BPE algorithm is simple: begin by splitting words into characters (i.e., "dog" to the three tokens "d" "o" "g"), then merge frequent pairs of tokens iteratively
- This is typically applied to the concatenation of the source and target corpus in MT, to ensure that identical names are split identically in the two languages
- Usually the total vocabulary is limited to something like 16000 or 30000
- Wordpiece is a Google in-house variant of BPE, used in, e.g., BERT, while "Unigram" (Kudo, 2018) is a newer variant that uses unigram probabilities of the resulting tokens

BPE vs Unigram vs ...

Bostrom und Durrett (Findings EMNLP 2020) show that Unigram may be better:

BPE:	furiously _fur iously _fur ious ly	BPE:	tricycles _t ric y cles _tri cycle s	BPE:	nanotechnology _n an ote chn ology _nano technology	
	Original: BPE: Unigram LM:					
	0	corrupted _cor rupted _corrupt ed	BPE:	_184 8 _	and _185 2,	

In my group we have a number of papers showing the effectiveness of stemming, morphological analysis and even morphological generation in NMT (and also SMT). See work by Marion Weller-Di Marco, for instance.

Questions?