Center for Information and Lang Processing Prof. Dr. Alexander Fraser

Erweiterungsmodul: Machine Translation

Exercise Sheet

Phrase Extraction, Language Models, Noisy Channel

(Thanks Costanza Conforti)

Please turn in your writeup as a PDF named as usual, like: fraser_alexander_ex3.pdf

Exercise 1. Phrase Extraction

Given the English-German sentence pair below, with the relative word alignment, extract all phrases consistent with the word alignment¹.

- How many distinct contiguous English and German phrases does this example contain? How many phrases are extracted?
- In some cases, given an English phrase, it is not possible to extract matching phrases in German. Find at least one example in this sentence pairs.
- Which is the effect of unaligned words in the number of extracted phrases?
- How many phrases can be extracted from a sentence of length n?

 $^{^{1}}$ Both the pseudo-code and the example in this exercise are taken from Koehn, Philipp. *Statistical machine translation*. Cambridge University Press, 2009

Exercise 2. Language Model, Noisy Channel²

(a) Calculate the parameters p(e|e-1) of a Bigram Language Model from a corpus containing the following four sentences:

START the house is small START the house is little START the building is small START the home building is small

(b) Given the sentence $\mathbf{f} =$ "das Haus ist klein" and the following parameters p(f|e):

the		house		building		is		exists		little		small	
der	0.3	Haus	0.5	Gebäude	0.7	ist	0.7	ist	0.2	klein	0.7	klein	0.8
die	0.3	Heim	0.1	Haus	0.3	existiert	0.2	existiert	0.7	kurz	0.3	kurz	0.2
das	0.4	Gebäude	0.4			hat	0.1	hat	0.1				

calculate p(e|f) of the following translations:

- $\mathbf{e} =$ "the building is little"
- $\mathbf{e} =$ "the house exists small"

using the Language Model of point (a) and IBM Model 1 as translation model. Recover that

$$argmax_e p(e|f) = argmax_e \frac{p(f|e)p(e)}{p(f)} = argmax_e p(f|e)p(e)$$
(1)

 $^{^2 \}rm Originally$ conceived by Laura Jehl, PhD candidate at the University of Heidelberg, modified by Costanza Conforti