

**Erweiterungsmodul: Machine Translation** 

SS 2023

## **Exercise Sheet**

## Evaluating MT output

(Thanks to Costanza Conforti, Laura Jehl)

Please submit your writeup in a single PDF file called lastname\_firstname\_ex4.pdf (e.g., fraser\_alexander\_ex4.pdf).

Exercise 1. Given the following output translations of 2 MT Systems, with the corresponding reference<sup>1</sup>:

- System A Israeli officials responsibility of airport safety
- System B airport security Israeli officials are responsible
- Reference Israeli officials are responsible for airport security
- (a) Calculate the **Position-independent error rate** (PER) of both system. Recall that

$$PER = 1 - \frac{correct - max(0, output\_length - reference\_length)}{reference\_length}$$
(1)

What do you observe?

(b) Then, calculate the Word Error Rate (WER) of both systems.

WER employs the *Levenshtein* distance, which is defined as the minimum number of editing steps needed to match two sequences. Considered editing steps are:

- substitution = replace one word with another
- insertion = add word
- deletion = drop word

To calculate the WER, proceed as follows: compute the Levenshtein distance by filling the matrix below, containing words from System B output on one axis and reference words on the other, as in has been done in the example below for System A output. Remember that the Levenshtein distance between two strings of length |a| and |b| is given by:

Given the Levenshtein distance, calculate the WER of both systems using the formula:

$$WER = \frac{substitutions + insertions + deletions}{reference\_length} \tag{2} \label{eq:2}$$

What do you observe?

<sup>&</sup>lt;sup>1</sup>The examples of this exercise, as well as the Figure, are taken from Koehn, Philipp. Statistical machine translation. Cambridge University Press, 2009

$$\mathrm{lev}_{a,b}(i,j) = egin{cases} \max(i,j) & \mathrm{if} \min(i,j) = 0, \ \mathrm{lev}_{a,b}(i-1,j) + 1 & \ \mathrm{lev}_{a,b}(i,j-1) + 1 & \mathrm{otherwise}. \ \mathrm{lev}_{a,b}(i-1,j-1) + 1_{(a_i 
eq b_j)} & \end{cases}$$

|             |   | Israeli | officials | responsibility | of | airport | safety |             |   | airport | security | Israeli | officials | are | responsible |
|-------------|---|---------|-----------|----------------|----|---------|--------|-------------|---|---------|----------|---------|-----------|-----|-------------|
|             | 0 | 1       | 2         | 3              | 4  | 5       | 6      |             | 0 | 1       | 2        |         |           |     |             |
| Israeli     | 1 | 0       | 1         | 2              | 3  | 4       | 5      | Israeli     | 1 | 1       | 2        |         |           |     |             |
| officials   | 2 | 1       | 0         | 1              | 2  | 3       | 4      | officials   | 2 |         |          |         |           |     |             |
| are         | 3 | 2       | 1         | 1              | 2  | 3       | 4      | are         | 3 |         |          |         |           |     |             |
| responsible | 4 | 3       | 2         | 2              | 2  | 3       | 4      | responsible | 4 |         |          |         |           |     |             |
| for         | 5 | 4       | 3         | 3              | 3  | 3       | 4      | for         | 5 |         |          |         |           |     |             |
| airport     | 6 | 5       | 4         | 4              | 4  | 3       | 4      | airport     | 6 |         |          |         |           |     |             |
| security    | 7 | 6       | 5         | 5              | 5  | 4       | 4      | security    | 7 |         |          |         |           |     |             |

(c) Finally, calculate the  ${\bf BLEU}$  score of both sentences.

BLEU score combines n-gram precision with a brevity penalty, defined as  $min(1, \frac{output\_length}{reference\_length})$ . Using the formula:

$$BLEU-N = min(1, \frac{output\_length}{reference\_length}) \prod_{i=1}^{n} precision_{i}$$
 (3)

calculate the BLEU score with maximum order n for n-grams to be matched equal to 1, 2, 3 and 4. (Note that BLEU-4 is standardly used in the literature)

| Metric                   | System A | System B |
|--------------------------|----------|----------|
| precision (1-gram)       | /6       | /6       |
| precision (2-gram)       | /5       | /5       |
| precision (3-gram)       | /4       | /4       |
| precision (4-gram)       | /3       | /3       |
| brevity penalty (4-gram) | /7       | /7       |
| BLEU-1                   | ,        | ,        |
| BLEU-2                   |          |          |
| BLEU-3                   |          |          |
| BLEU-4                   |          |          |
|                          |          |          |