Statistical Machine Translation Part V – Better Word Alignment, Morphology and Syntax

Alexander Fraser

Institute for Natural Language Processing Universität Stuttgart

2012.09.17 Seminar: Statistical MT NSSNLP, University of Kathmandu

Where we have been

- We've discussed the MT problem and evaluation
- We have covered phrase-based SMT
 - Model (now using log-linear model)
 - Training of phrase block distribution
 - Dependent on word alignment
 - Search

Where we are going

- Word alignment makes linguistic assumptions that are not realistic
- Phrase-based decoding makes linguistic assumptions that are not realistic
- How can we improve on this?

Outline

- Improved word alignment
- Morphology
- Syntax
- Conclusion

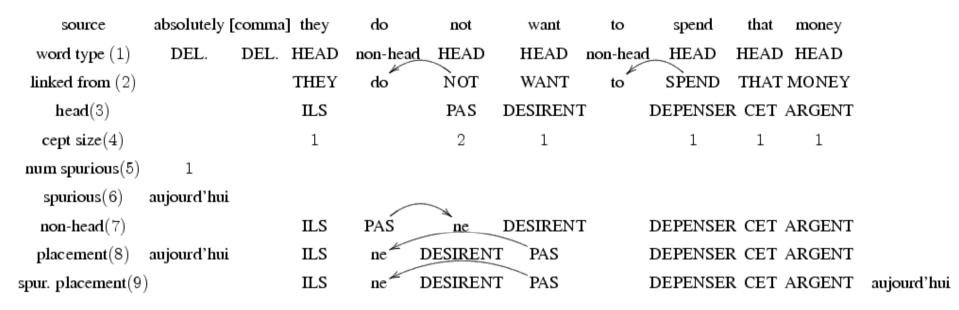
Improved word alignments

- My dissertation was on word alignment
- Three main pieces of work
 - Measuring alignment quality (F-alpha)
 - We saw this already
 - A new generative model with many-to-many structure
 - A hybrid discriminative/generative training technique for word alignment

Modeling the Right Structure

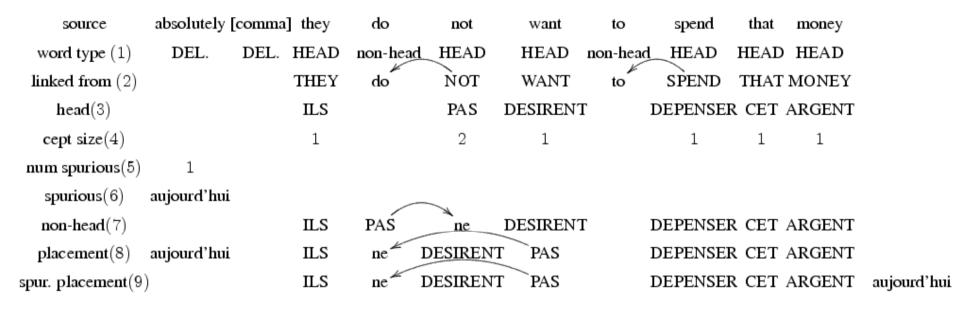
- 1-to-N assumption
 - Multi-word "cepts" (words in one language translated as a unit) only allowed on target side. Source side limited to single word "cepts".
- Phrase-based assumption
 - "cepts" must be consecutive words

LEAF Generative Story



- Explicitly model three word types:
 - Head word: provide most of conditioning for translation
 - Robust representation of multi-word cepts (for this task)
 - This is to semantics as ``syntactic head word'' is to syntax
 - Non-head word: attached to a head word
 - Deleted source words and spurious target words (NULL aligned)

LEAF Generative Story



- Once source cepts are determined, exactly one target head word is generated from each source head word
- Subsequent generation steps are then conditioned on a single target and/or source head word
- See EMNLP 2007 paper for details

Discussion

- LEAF is a powerful model
- But, exact inference is intractable
 - We use hillclimbing search from an initial alignment
- Models correct structure: M-to-N discontiguous
 - First general purpose statistical word alignment model of this structure!
 - Can get 2nd best, 3rd best, etc hypothesized alignments (unlike 1to-N models combined with heuristics)
 - Head word assumption allows use of multi-word cepts
 - Decisions robustly decompose over words (not phrases)

New knowledge sources for word alignment

- It is difficult to add new knowledge sources to generative models
 - Requires completely reengineering the generative story for each new source
- Existing unsupervised alignment techniques can not use manually annotated data

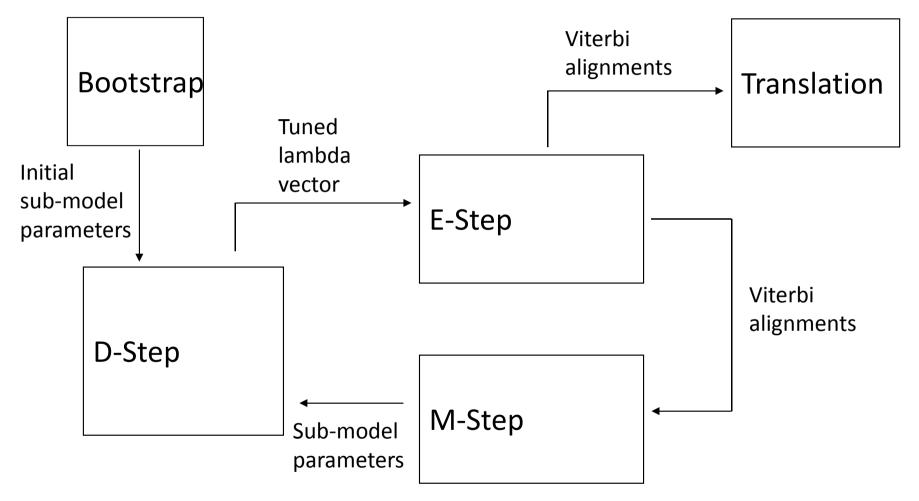
Decomposing LEAF

- Decompose each step of the LEAF generative story into a sub-model of a log-linear model
 - Add backed off forms of LEAF sub-models
 - Add heuristic sub-models (do not need to be related to generative story!)
 - Allows tuning of vector $\boldsymbol{\lambda}$ which has a scalar for each sub-model controlling its contribution
- How to train this log-linear model?

Semi-Supervised Training

- Define a semi-supervised algorithm which alternates increasing likelihood with decreasing error
 - Increasing likelihood is similar to EM
 - Discriminatively bias EM to converge to a local maxima of likelihood which corresponds to "better" alignments
 - "Better" = higher F_{α} -score on small gold standard word alignments corpus
 - Integrate minimization from MERT together with EM

The EMD Algorithm



Discussion

- Usual formulation of semi-supervised learning: "using unlabeled data to help supervised learning"
 - Build initial supervised system using labeled data, predict on unlabeled data, then iterate
 - But we do not have enough gold standard word alignments to estimate parameters directly!
- EMD allows us to train a small number of important parameters discriminatively, the rest using likelihood maximization, and allows interaction
 - Similar in spirit (but not details) to semi-supervised clustering

Contributions

- Found a metric for measuring alignment quality which correlates with decoding quality
- Designed LEAF, the first generative model of M-to-N discontiguous alignments
- Developed a semi-supervised training algorithm, the EMD algorithm
 - Allows easy incorporation of new features into a word alignment model that is still mostly unsupervised
- Obtained large gains of 1.2 BLEU and 2.8 BLEU points for French/English and Arabic/English tasks

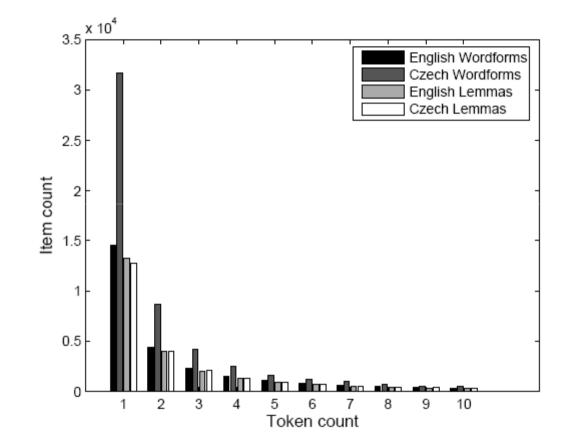
Outlook

- Provides a framework to integrate more morphological and syntactic features in word alignment
 - We are working on this at Stuttgart
 - Other groups doing interesting work using other alignment frameworks (for instance, IBM and ISI for Arabic, Berkeley and ISI for Chinese; many more)

Morphology

- We will use the term morphology loosely here
 - We will discus two main phenomena: Inflection, Compounding
 - There is less work in SMT on modeling of these phenomena than there is on syntactic modeling
 - A lot of work on morphological reduction (e.g., make it like English if the target language is English)
 - Not much work on generating (necessary to translate to, for instance, Slavic languages or Finnish)

Inflection



Inflection

- Inflection
 - The best ideas here are to strip redundant morphology
 - For instance case markings that are not used in target language
 - Can also add pseudo-words
 - One interesting paper looks at translating Czech to English (Goldwater and McClosky)
 - Inflection which should be translated to a pronoun is simply replaced by a pseudo-word to match the pronoun in preprocessing

Compounds

- Find the best split by using word frequencies of components (Koehn 2003)
- Aktionsplan -> Akt Ion Plan or Aktion Plan?
 - Since Ion (English: ion) is not frequent, do not pick such a splitting!
- Last time I presented these slides in 2009:
 - This is not currently improved by using hand-crafted morphological knowledge
 - I doubt this will be the case much longer
- Now: Fabienne Cap has shown using SMOR (Stuttgart Morphological Analyzer) together with corpus statistics is better (Fritzinger and Fraser WMT 2010)

Syntax

- Better modeling of syntax is currently the hottest topic in SMT
- For instance, consider the problem of translating German to English
 - One way to deal with this is to make German look more like English

Clause Level Restructuring [Collins et al.]

• Why clause structure?

- languages *differ vastly* in their clause structure (English: SVO, Arabic: VSO, German: fairly *free order*; a lot details differ: position of adverbs, sub clauses, etc.)
- large-scale restructuring is a *problem* for phrase models

• Restructuring

- reordering of constituents (main focus)
- add/drop/change of *function words*

Clause Structure

S PPER-SB VAFIN-HD VP-OC	PPER-DA Ih: NP-OA AR' AD NN VVFIN au	en you OA die the MAIN NK entsprechenden corresponding CLAUSE
\$		ADJD-MO eventuell perhaps PP-MO APRD-MO bei in ART-DA der the NN-NK Abstimmung vote VVINF uebernehmen include

• Syntax tree from German parser

Reordering When Translating

S	PPER-SB VAFIN-HD PPER-DA NP-OA	Ich werde Ihnen ART-OA ADJ-NK NN-NK	die entsprechenden Anmerkungen	I will you the corresponding comments
	VVFIN	aushaendigen		pass on
\$,	,			,
S-MO	KOUS-CP	damit		so that
	PPER-SB	Sie		you 🕳
	PDS-OA	das		that
	ADJD-MO	eventuell		perhaps X
	PP-MO	APRD-MO	bei	în î))
		ART-DA	der	the
		NN-NK	Abstimmung	vote / /
	VVINF	uebernehmen		include
	VMFIN	koennen		can
s				

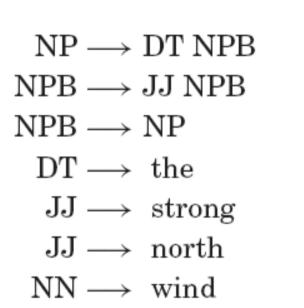
- *Reordering* when translating into English
 - tree is *flattened*
 - clause level constituents line up

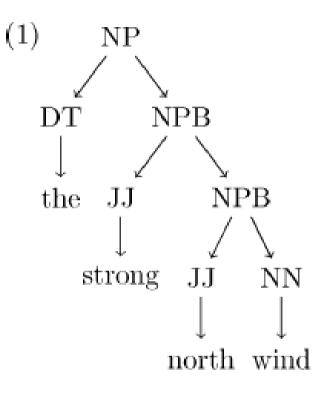
Systematic Reordering German \rightarrow English

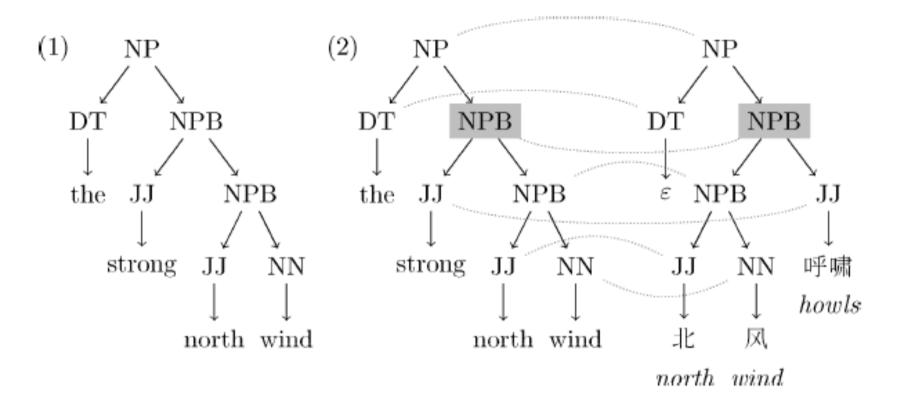
- Many types of reorderings are systematic
 - move verb group together
 - subject verb object
 - move negation in front of verb
- \Rightarrow Write rules by hand
 - apply rules to test and training data
 - train standard *phrase-based* SMT system

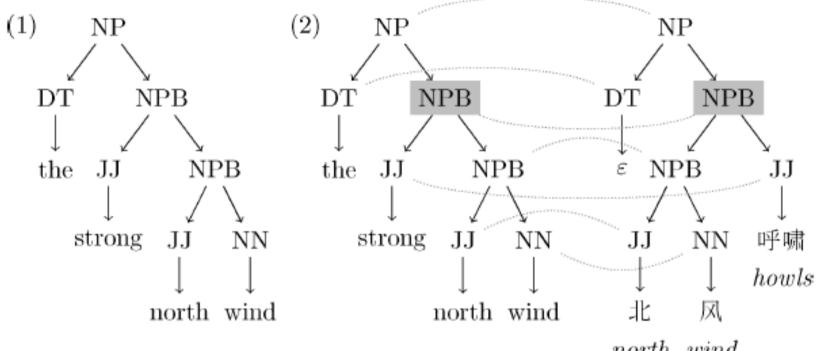
But what if we want to integrate probabilities?

- It turns out that we can!
- We will use something called a synchronous context free grammar (SCFG)
- This is surprisingly simple
 - Just involves defining a CFG with some markup showing what do to with the target language
 - We'll do a short example translating an English NP to a Chinese NP









$$\begin{array}{c} \mathrm{NP} \longrightarrow \mathrm{DT}_{1}\mathrm{NPB}_{2} \ / \ \mathrm{DT}_{1}\mathrm{NPB}_{2} \\ \mathrm{NPB} \longrightarrow \mathrm{JJ}_{1}\mathrm{NN}_{2} \ / \ \mathrm{JJ}_{1}\mathrm{NN}_{2} \\ \mathrm{NPB} \longrightarrow \mathrm{NPB}_{1}\mathrm{JJ}_{2} \ / \ \mathrm{JJ}_{2}\mathrm{NPB}_{1} \\ \mathrm{DT} \longrightarrow \mathrm{the} \ / \ \varepsilon \\ \mathrm{JJ} \longrightarrow \mathrm{strong} \ / \ \mathrm{Fr} \\ \mathrm{JJ} \longrightarrow \mathrm{north} \ / \ \mathrm{ll} \\ \mathrm{NN} \longrightarrow \mathrm{wind} \ / \ \mathrm{Il} \end{array}$$

Learning a SCFG from data

- We can learn rules of this kind
 - Given: Chinese/English parallel text
 - We parse the Chinese (so we need a good Chinese parser)
 - We parse the English (so we need a good English parser)
 - Then we word align the parallel text
 - Then we extract the aligned tree nodes to get
 SCFG rules; we can use counts to get probabilities

But unfortunately we have some problems

- Two main problems with this approach
 - A text and its translation are not always isomorphic!
 - CFGs make strong independence assumptions

- A text and its translation are not always isomorphic!
 - Heidi Fox looked at two languages that are very similar, French and English, in a 2002 paper
 - Isomorphic means that a constituent was translated as something that can not be viewed as one or more complete constituents in the target parse tree
 - She found widespread non-isomorphic translations
 - Experiments (such as the one in Koehn, Och, Marcu 2003) showed that limiting phrase-based SMT to constituents in a CFG derivation hurts performance substantially
 - This was done by removing phrase blocks that are not complete constituents in a parse tree
 - However, more recent experiments call this result into question

- CFGs make strong independence assumptions
 - With a CFG, after applying a production like S -> NP VP then NP and VP are dealt with independently
 - Unfortunately, in translation with a SCFG, we need to score the language model on the words not only in the NP and the VP, but also across their boundaries
 - To score a trigram language model we need to track two words OUTSIDE of our constituents
 - For parsing (= decoding), we switch from divide and conquer (low order polynomial) for an NP over a certain span to creating a new NP for each set of boundary words!
 - Causes an explosion of NP and VP productions
 - For example, in chart parsing, there will be many NP productions of interest for each chart cell (the difference between them will be the two proceeding words in the translation)

- David Chiang's Hiero model partially overcomes both of these problems
 - One of very many syntactic SMT models that have been recently published
 - Work goes back to mid-90s, when Dekai Wu first proposed the basic idea of using SCFGs (not long after the IBM models were proposed)

Chiang: Hierarchical Phrase-based Model

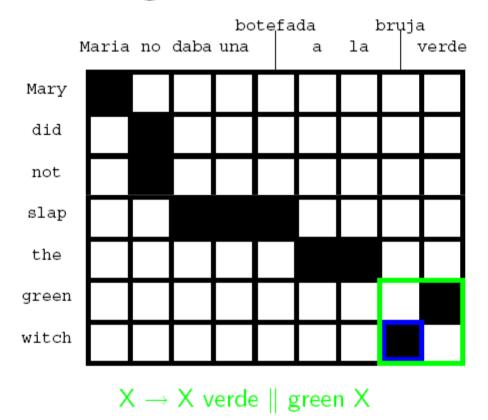
- Chiang [ACL, 2005] (best paper award!)
 - context free bi-grammar
 - one non-terminal symbol
 - right hand side of rule may include non-terminals and terminals
- *Competitive* with phrase-based models in 2005 DARPA/NIST evaluation

Types of Rules

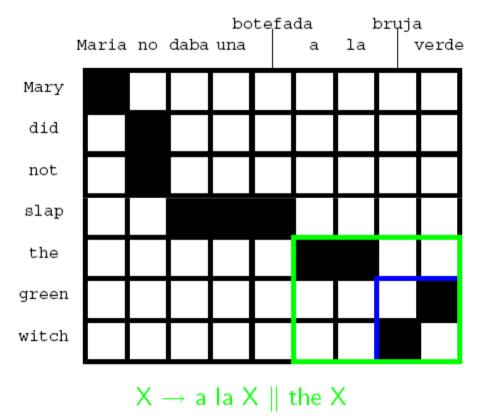
• Word translation

- $X \rightarrow$ maison \parallel house

- *Phrasal* translation
 - $X \rightarrow$ daba una bofetada | slap
- Mixed non-terminal / terminal hierarchial phrases
 - $X \rightarrow X_1$ bleue \parallel blue X_1
 - $X \rightarrow$ ne X_1 pas \parallel not X_1
 - $X \rightarrow X_1 X_2 \parallel X_2$ of X_1
- Technical rules
 - $S \to S_1 X_2 \parallel S_1 X_2$
 - $S \to X_1 \parallel X_1$



Learning Hierarchical Rules



Learning Hierarchical Rules

Comments on Hiero

- Grammar does not depend on labeled trees, and does not depend on preconceived CFG labels (Penn Treebank, etc)
 - Instead, the word alignment alone is used to generate a grammar
 - The grammar contains all phrases that a phrase-based SMT system would use as bottom level productions
 - This does not completely remove the non-isomorphism problem but helps
- Rules are strongly lexicalized so that only a low number of rules apply to a given source span
 - This helps make decoding efficient despite the problem of having to score the language model

Comments on Morphology and Syntax

- Phrase-based SMT is robust, and is still state of the art for many language pairs
 - Competitive with or better than rule-based for many tasks (particularly with heuristic linguistic processing)
- Integration of morphological and syntactic models will be the main focus of the next years
 - Many research groups working on this (particularly syntax)
 - Hiero is easy to explain, but there are many others
 - Chinese->English MT (not just SMT) is already dominated by syntactic SMT approaches

• Thanks for your attention!