Statistical Machine Translation Part VI – Dealing with Morphology for Translating to German

Alexander Fraser

Institute for Natural Language Processing Universität Stuttgart

2012.09.18 Seminar: Statistical MT NSSNLP, University of Kathmandu

Outline

- (Other) work on bitext involving morphologically rich languages at Stuttgart
- Another word on analyzing German compounds
- Morphological generation of German for SMT

Collaborators: Fabienne Braune, **Aoife Cahill**, **Fabienne Cap**, Nadir Durrani, Richard Farkas, Anita Ramm, Hassan Sajjad, Helmut Schmid, Hinrich Schuetze, Florian Schwarck, Renjing Wang, **Marion Weller**

Hindi to Urdu SMT using transliteration

- Hindi and Urdu are very strongly related languages but written in different scripts
- In a small study we determined that over 70% of the tokens in Hindi can be transliterated directly into Urdu
 - The rest must be (semantically) translated
- We designed a new joint model integrating (semantic) translation with transliteration to solve this problem

German subject-object ambiguity

- Example:
 - German: "Die Maus jagt die Katze"
 - Gloss: The mouse chases the cat
 - **SVO** meaning: the mouse is the one chasing the cat
 - **OVS** meaning: the cat is the one chasing the mouse
- When does this happen?
 - Neither subject nor object are marked with unambiguous case marker
 - In the example, both nouns are feminine, article "die" could be nominative or accusative case
 - Quite frequent: nouns, proper nouns, pronouns possible
- We use a German dependency parser that detects this ambiguity and a projected English parse to resolve it
 - This allows us to create a disambiguated corpus with high precision

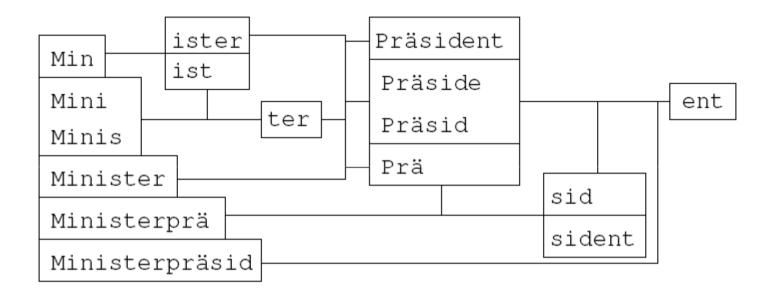
General bitext parsing

- We generalized the previous idea to a bitext parsing framework
- We use rich measures of syntactic divergence to estimate how surprised we are to see a triple (English_tree, German_tree, alignment)
 - These are combined together in a log-linear model that can be used to rerank 100-best lists from a baseline syntactic parser
 - New experiments on English to German and German to English both show gains, particularly strong for English to German

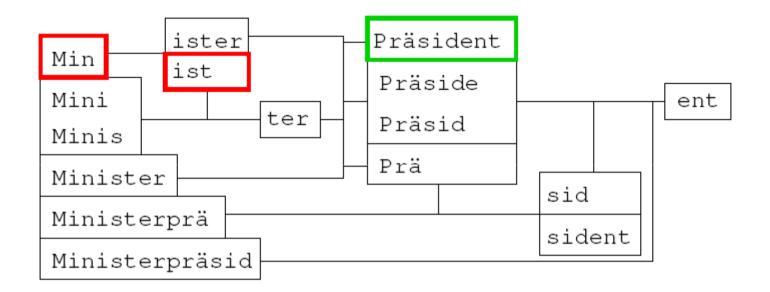
Improved compound analysis for SMT

- Compounds are an important problem for German to English translation and vice versa
- The standard approach to solving this is from Koehn and Knight 2003
- Use a simple linguistic search based on limited linguistic knowledge and the frequencies of words which could form the compound
- We use a high recall rule-based analyzer of German morphology combined with word frequencies to improve beyond this
- Large improvements in METEOR/BLEU beyond Koehn

Example splitting: Ministerpräsident (prime ministre)



Splitting that maximises the score: Min|ist|Präsident ("Min|is|president") Example splitting: Ministerpräsident (prime ministre)



Splitting that maximises the score: Min|ist|Präsident ("Min|is|president")

Outline

- Work on bitext involving morphologically rich languages at Stuttgart (transliteration, bitext parsing)
- Morphology for German compounds
- Morphological generation of German for SMT
 - Introduction
 - Basic two-step translation
 - Translate from English to German stems
 - Inflect German stems
 - Surface forms vs. morphological generation
 - Dealing with agglutination

Tangent: Morphological Reduction of Romanian

- Early work on morphologically rich languages was the shared task of Romanian/English word alignment in 2005
- I had the best constrained system in the 2005 shared task on word alignment
 - I truncated all English and Romanian words to the first 4 characters and then ran GIZA++ and heuristic symmetrization
 - This was very effective almost as good as best unconstrained system which used all sorts of linguistic information (Tufis et al)

Tangent: Morphological Reduction of Romanian

- Early work on morphologically rich languages was the shared task of Romanian/English word alignment in 2005
- I had the best constrained system in the 2005 shared task on word alignment
 - I truncated all English and Romanian words to the first 4 characters and then ran GIZA++ and heuristic symmetrization
 - This was very effective almost as good as best unconstrained system which used all sorts of linguistic information (Tufis et al)
- This alienated people interested in both modeling and (nonsimplistic) linguistic features
 - I redeemed myself with the (alignment) modeling folks later
 - Hopfully this talk makes linguistic features people happy

Morphological Generation of German - Introduction

- For many translation directions SMT systems are competitive with previous generation systems
 - German to English is such a pair
 - The shared task of ACL 2009 workshop on MT shows this
 - Carefully controlled constrained systems are equal in performance to the best rule-based systems
 - Google Translate may well be even better, but we don't know
 - Data not controlled (language model most likely contains data too similar to test data)
 - English to German is not such a pair
 - Rule-based systems produce fluent output that is currently superior to SMT output

Stuttgart WMT 2009 systems

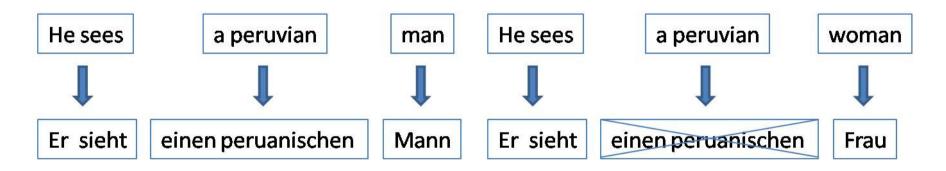
- German to English system
 - Aggressive morphological reduction (compound splitting & stemming)
 - Deterministic clause reordering using BitPar syntactic parser
 - Worked well (best constraint system)
- English to German system
 - Two independent translation steps
 - Translation from English to morphologically simplified German
 - Translation from morphologically simplified German to fully inflected German
 - Did not work well (worst constraint system)
 - Better modeling is necessary...

Morphological reduction of German

- Morphological reduction driven by sub-word frequencies
 - Simultaneously reduce compounds and stem
 - Compound reduction used Koehn and Knight 2003
 - But it was different: stemming is aggressive; ambiguous suffixes were stripped (motivated by sparsity of news data)
- English to German system tried to invert this process
 - Generate inflected forms (using a second SMT system that translated from reduced representation to normal words using only lemmas and split compounds)
 - This is too hard!

Morphological generation for German

- Goal: fluent output for translation to German
- Problem: German is morphologically rich and English is morphologically poor
 - Many features of German can not be determined easily from English
 - We will focus on 4 features which are primarily aimed at improving NP and PP translation
 - These features are: Gender, Case, Number, Definiteness



Inflection Features

- Gender, Case, Number, Definiteness
 - Diverse group of features
 - Number of the noun and Definiteness of the article are (often easily?) determined given the English source and the word alignment
 - Gender of the noun is innate
 - Often a grammatical gender (for example: inanimate objects in German have genders that are often hard to determine, unlike many Spanish or French nouns)
 - Case is difficult, for instance, often a function of the slot in the subcategorization frame of the verb
 - There is agreement in all of these features in a particular NP
 - For instance the gender of an article is determined by the head noun
 - Definiteness of adjectives is determined by choice of indefinite or definite article
 - Etc...

Overview of translation process

- In terms of translation, we can have a large number of surface forms
- English "blue" -> blau, blaue, blauer, blaues, blauen
- We will try to predict which form is correct
- Our system will be able to generate forms which were not seen in the training data
- We will follow a two-step process:
 - 1. Translate to "blau" (stem)
 - 2. Predict features (e.g., Nominative, Feminine, Singular, Definite) to generate the correct form "blaue"
 - 3. I will compare this with directly predicting "blaue" (e.g. the work presented by Ondrej)

Pros/Cons of 2 step process

- Pros
 - Morphological reduction for translation step better learning from limited parallel data
 - Some inflection is not really a function of English e.g., grammatical gender. Can predict this using only the German sequence of stems
 - Inflectional features can be treated as something like a (POS) tagging problem
 - Can build tagging system on clean German text with relevant features removed
 - Test it by trying to predict original forms
 - We are solving two easier sub-problems!

Pros/Cons of 2 step process

- Cons
 - Conditionality of generation translate to stems, then predict inflection based on stems
 - No influence of final word forms on stems
 - This is particularly a problem for Case (Case would be difficult anyway, but lexical clues would help)
 - Using features like Case, Definiteness, etc., could be viewed as solving a more difficult problem then necessary
 - We may be modeling definiteness even when it doesn't matter to generation, etc

Syntactic processing

- Preprocess data:
 - Parse all German data (German side of parallel corpus and German language modeling data) with BitPar, extract morphological features
 - Lookup surface forms in SMOR
 - Resolve conflicts between parse and SMOR
 - Output "stems" (+markup, this will be discussed later) for stem-based translation system
- We also slightly regularize the morphology of English to be more similar to German
 - We use an English morphological analyzer and a parser to try to disambiguate singular/plural/possessive/us (as in Let's)
 - a/an is mapped to indef_determiner
 - We would do more here if translating, say, Arabic to German

Translating stems

- Build standard phrase-based SMT system
 - Word alignment, phrase-based model estimation, LM estimation
- Run minimum error rate training (MERT)
 - Currently optimizing BLEU on stems (not inflected)

Stem markup

- We are going to use a simple model at first for "propagating" inflection
- So we will make some of the difficult decisions in the stem translation step
- The best German stem markup so far:
 - Nouns are marked with gender and number
 - Pronouns are nominal or not_nominal
 - Prepositions are annotated with the case they mark
 - Articles are only marked definite or indefinite
 - Verbs are fully inflected
 - Other words (e.g., adjectives) are lemmatized

Comparing different stem+markup representations

- BLEU score from MERT on dev (this is abusing BLEU!!)
- Baseline: 13.49
- WMT 2009: 15.80
 - Based on Koehn and Knight. Aggressive stemming, reduced compounds. No markup.
- Initial: 15.54
 - Based on SMOR. Nouns marked with gender and number; coarse POS tag in factored model. No compound handling (will discuss a special case later)
- "version 1a": 15.21
 - Same, plus prepositions are marked with case (very useful for ambiguous prepositions)

Review – first step

- Translate to stems
 - But need markup to not lose information
 - This is true of pivot translation as well
- In the rest of the talk I will talk about how to predict the inflection given the stemmed markup
 - But first let me talk about previous work...

Previous work

- The two-step translation approach was first tried by Kristina Toutanova's group at MSR (ACL 2008, other papers)
 - They viewed generating an Arabic token as a two-step problem
 - Translate to a sequence of "stems" (meaning the lemma in Buckwalter)
 - Predict the surface form of each stem (meaning a space-separated token)
 - We are interested in two weaknesses of this work
 - 1. They try to directly predict surface forms, by looking at the features of the surface form
 - I will show some evidence that directly predicting surface forms might not be a good idea and argue for a formal morphological generation step
 - This argument applies to Ondrej's work as well (I think)
 - Also, Arabic is agglutinative! Thinking of the token meaning and-hisbrother as an inflection of brother is problematic (think about what the English correspondence looks like!)

Inflection Prediction

output decoder	input prediction	output prediction	inflected forms	gloss
haben <vafin></vafin>	haben-V	haben-V	haben	have
Zugang<+NN> <masc><sg></sg></masc>	NN-Sg-Masc	NN-Masc.Acc.Sg.notdef	Zugang	access
zu <appr><dat></dat></appr>	APPR-zu-Dat	APPR	zu	to
die<+ART> <def></def>	ART-def	ART-Neut.Dat.Sg.def	dem	the
betreffend<+ADJ> <pos></pos>	ADJA	ADJA-Neut.Dat.Sg.def	betreffenden	respective
Land<+NN> <neut><sg></sg></neut>	NN-Sg-Neut	NN-Neut.Dat.Sg.def	Land	country

Solving the prediction problem

- We can use a simple joint sequence model for this (4-gram, smoothed with Kneser-Ney)
- This models P(stems, coarse-POS, inflection)
 - Stems and coarse-POS are always observed
 - As you saw in the example, some inflection is also observed in the markup
 - Predict 4 features (jointly)
 - We get over 90% of word forms right when doing monolingual prediction (on clean text)
 - This works quite well for Gender, Number and Definiteness
 - Does not always work well for Case
 - Helps SMT quality (results later)

Surface forms vs morphological generation

- The direct prediction of surface forms is limited to those forms observed in the training data, which is a significant limitation
- However, it is reasonable to expect that the use of features (and morphological generation) could also be problematic
 - Requires the use of morphologically-aware syntactic parsers to annotate the training data with such features
 - Additionally depends on the coverage of morphological analysis and generation
- Our research shows that prediction of grammatical features followed by morphological generation (given the coverage of SMOR and the disambiguation of BitPar) is more effective
- This is a striking result, because in particular we can expect further gains as syntactic parsing accuracy increases!

1 LM to 4 CRFs

- In predicting the inflection we would like to use arbitrary features
- One way to allow the use of this is to switch from our simple HMM/LM-like model to a linear-chain CRF
- However, CRFs are not tractable to train using the crossproduct of grammatical feature values (e.g., Singular.Nominal.Plural.Definite)
 - Using Wapiti (ACL 2010) Chris says we should be using CDEC...
- Fortunately, we can show that, given the markup, we can predict the 4 grammatical features independently!
- Then we can scale to training four independent CRFs

Linear-chain CRF features

Common	$lemma_{w_{1}-5}w_{i+5}, tag_{w_{i-7}w_{i+7}}$
Case	$case_{w_{i-5}w_{i+5}}$
Gender	$gender_{w_{i-5}w_{i+5}}$
Number	number $w_{i-5}w_{i+5}$
Def.	$def_{w_{i-5}w_{i+5}}$

•We use up to 6 grams for all features except tag (where we use 8 grams)

- •The only transition feature used is the label bigram
- •We use L1 regularization to obtain a sparse model

English features

- SMT is basically a target language generation problem
- It seems to be most important to model fluency in German (particularly given the markup on the stems)
- However, we can get additional gain from prediction from the English, it is easy to add machine learning features to the CRF framework
- As a first stab at features for predicting a grammatical feature on a German word, we use:
 - POS tag of aligned English word
 - Label of highest NP in chain of NPs containing the aligned word
 - Label of the parent of that NP
- Labels: Charniak/Johnson parser then the Seeker/Kuhn function labeler

Dealing with agglutination

- As I mentioned previously, one problem with Toutanova's work is treating agglutination as if it is inflection
- It is intuitive to instead segment to deal with agglutination
- We are currently doing this for a common portmanteau in German:
 - Preposition + Article
 - E.g., "zum" -> this is the preposition "zu" and the definite article "dem"
- This means we have to work with a segmented representation (e.g., zu+Dative, definite_article in the stemmed markup) for training and inflection prediction
 - Then synthesize: creation of portmanteaus dependis on the inflection decision
- Recently, we got this to work for German compounds as well
 - We translate to compound head words and compound non-head words, then subsequently combine them. Finally we inflect them.

Evaluation

- WMT 2009 English to German news task
- All parallel training data (about 1.5 M parallel sentences, mostly Europarl)
- Standard Dev and Test sets
- Two limitations of the experiments here:
 - We were not able to parse the monolingual data, so we are not using it (except in one experiment...)
 - The inflection prediction system that predicts grammatical features does not currently have access to an inflected word form LM
- We have recently overcome these, see our EACL 2012 paper

System	BLEU (end-to-end, case sensitive)
Baseline	12.62
1 LM predicting surface forms, no portmanteau handling	12.31
1 LM predicting surface forms (11 M sentences inflection prediction training), no portmanteau handling	12.72
1 LM predicting surface forms	12.80
1 LM predicting grammatical features	13.29
4 LMs, each predicting one grammatical feature	13.19
4 CRFs, German features only	13.39
4 CRFs, German and English features	13.58

Newest developments

- We now have a rule-based preprocessing setup for English to German translation
 - See our EACL 2012 paper
 - This does reordering of English clauses by analyzing what the translated German clause type will be
- We are currently working on combining inflection, compounding, verbal reordering and verbal morphology prediction

Summary of work on translating to German

- Two-step translation (with good stem markup) is effective
- Predicting morphological features and generating is superior to surface form prediction
 - This depends on quality of SMOR (morph analysis/generation) and BitPar (used for morphological disambiguation here)
 - Performance will continue to improve as syntactic parsing improves
- Linear-chain CRFs good for predicting grammatical features
 - However, tractability is a problem
 - You can get (small gains) with very simple English features
 - More feature engineering work is in progress

Conclusion

- Lecture 1 covered background, parallel corpora, sentence alignment, evaluation and introduced modeling
- Lecture 2 was on word alignment using both exact and approximate EM
- Lecture 3 was on phrase-based modeling and decoding
- Lecture 4 was on log-linear models and MERT
- Lecture 5 briefly touched on new research areas in word alignment, morphology and syntax
- Lecture 6 presented work on translation to German which is relevant to morphologically rich languages in general

Thank you!

General bitext parsing

- Many advances in syntactic parsing come from better modeling
 - But the overall bottleneck is the size of the treebank
- Our research asks a different question:
 - Where can we (cheaply) obtain additional information, which helps to supplement the treebank?
- A new information source for resolving ambiguity is a **translation**
 - The human translator understands the sentence and disambiguates for us!

Parse reranking of bitext

- Goal: use English parsing to improve German parsing
- Parse German sentence, obtain list of 100 best parse candidates
- Parse English sentence, obtain single best parse
- Determine the correspondence of German to English words using a word alignment
- Calculate syntactic divergence of each German parse candidate and the projection of the English parse
- Choose probable German parse candidate with low syntactic divergence

Rich bitext projection features

- We initially worked on this problem in the German to English direction
 - Defined 36 features by looking at common English parsing errors
 - Later we added three additional features for the English to German direction
- No monolingual features, except baseline parser probability
- General features
 - Is there a probable label correspondence between German and the hypothesized English parse?
 - How expected is the size of each constituent in the hypothesized parse given the translation?
- Specific features
 - Are coordinations realized identically?
 - Is the NP structure the same?
- Mix of probabilistic and heuristic features
- This approach is effective, results using English to rerank German are strong

New bitext parsing results (not in EACL 2009 paper)

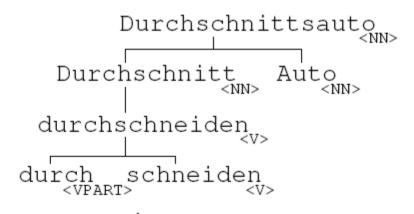
- Reranking German parses
 - This is an easier task than reranking English parses
 - The parser we are trying to improve is weaker (German is hard to parse, Europarl and SMULTRON are out of domain)
 - 1.64% F1 improvement currently, we think this can be further improved
- In the other direction (reranking English parses using a single German parse), we improve by 0.3% F1 on the Brown reranking parser
 - Harder task German parser is out of domain for translation of the Penn treebank, German is hard to parse. English parser is in domain

Compound Processing: SMOR

Schmid et al. 2004

- finite-state based morphological analyser for German
- covering inflection, derivation and compounding
- good coverage: huge lexicon (over 16,000 noun stems)

Example analysis: Durchschnittsauto ("average car")



SMOR with word frequency results

- Improvement of 1.04 BLEU/2.12 Meteor over no processing
- Statistically significantly better in BLEU than no processing
- Statistically significantly better in Meteor than no processing, and also than Koehn and Knight
- This is an important result as SMOR will be used (together with the BitPar parser) for morphological generation of German