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Abstract

All state of the art statistical machine translation systems and many example-based machine translation
systems depend on an annotation of word-level translational correspondence between sets of parallel
sentences. Such an annotation of two parallel sentences is called a “word alignment”. The largest
number of manually annotated word alignments currently available to the research community for any
pair of languages consists of alignments for only thousandsof parallel sentences, even though there are
several orders of magnitude more parallel sentences available. For instance, for the task of translating
Chinese news articles to English, there are currently on theorder of 10 million parallel sentences. This
is too many for manual alignment, so they must be automatically word aligned.

Unsupervised word alignment systems generate poor qualityalignments, often using statistical word
alignment models developed over 10 years ago, but most recent research into improving word alignments
has not led to improved translation. There are several reasons for this:

1. There is no good metric which can be used to automatically measure word alignment quality for
the translation task.

2. Statistical word alignment models are based on assumptions about the structure of the problem
which are incorrect.

3. It is difficult to add new sources of linguistic knowledge because many current systems must be
completely reengineered for each new knowledge source.

4. Statistical models of word alignment are most often learned in an unsupervised training process
which is unable to take advantage of annotated data.

This thesis remedies these problems by making contributions in the following three areas:

1. We have found a new method for automatically measuring alignment quality using an unbalanced
F-Measure metric (Fraser & Marcu, 2007b). We have validatedthat this metric adequately mea-
sures alignment quality for the translation task. We have shown that the metric can be used to de-
rive a loss function for discriminative training approaches, and it is useful for measuring progress
during the development of new word alignment procedures.

2. We have designed a new statistical model for word alignment called LEAF (Fraser & Marcu,
2007a), which directly models the word alignment structureas it is used for machine translation,
in contrast with previous models which make unreasonable structural assumptions.

3. We have developed a semi-supervised training algorithm,the EMD algorithm (Fraser & Marcu,
2006), which automatically takes advantage of whatever quantity of manually annotated data can
be obtained. The use of the EMD algorithm allows for the introduction of new knowledge sources
with minimal effort.

We have shown that these contributions improve state of the art statistical machine translation systems
in experiments on challenging large data sets.

viii



Chapter 1

Motivation

1.1 The Word Alignment Problem

Word alignment is the problem of determining translationalcorrespondence at the word level given a pair
of sentences, one of which is a translation of the other. The graph in Figure 1.1 shows a word alignment
of a pair of parallel sentences taken from the LDC Canadian Hansards corpus, which consists of English
and French documents. In this dissertation we will considerthe task of automatically annotating word
alignments.

Automatically aligning word level translational correspondence in parallel sentences so as to be able
to learn translation rules of high quality is a challenging problem in terms of both accuracy and tractabil-
ity. Most of the currently successful approaches used in conjunction with state of the art statistical ma-
chine translation systems use statistical models of carefully crafted generative stories which are trained
using unsupervised learning methods. The task of automaticword alignment is very different from the
automatic translation task. In automatic translation, we are trying to generate a reasonable translation,
which does not necessarily attempt to mimic all the complexities of human behavior. In automatic word
alignment, on the other hand, we must annotate an original sentence and whatever humans chose to
produce as a translation.

The research community has recently become very interestedin improving the quality of automatic
word alignment, as evidenced by a large number of recent papers beginning with Al-Onaizan et al.
(1999), and in particular two workshops featuring shared word alignment tasks, WPT03 (Mihalcea &
Pederson, 2003) and WPT05 (Martin et al., 2005). One reason for this is that word alignments are
critical to building statistical machine translation (SMT) systems. For instance, the estimation of phrase-
based SMT models (Koehn et al., 2003) such as those implemented in the Alignment Templates system
(Och & Ney, 2004) and Moses (Koehn et al., 2007) relies on wordalignments. Syntactic SMT models
(Galley et al., 2004; Galley et al., 2006; Melamed, 2004; Chiang, 2005; Quirk et al., 2005; Zollmann &
Venugopal, 2006) also require word alignments. Phrase-based and syntactic SMT models represent the
state of the art in SMT, and therefore improving automatic word alignment is an important endeavor.

Word alignment techniques are not only used in translation,but in fact to acquire knowledge in
virtually all trans-lingual tasks: Cross-Lingual Information Retrieval (Hiemstra & de Jong, 1999; Xu
et al., 2001; Fraser et al., 2002), Trans-lingual Coding (sometimes referred to as annotation projection)
(Yarowsky et al., 2001; Hwa et al., 2002), Document Alignment (Resnik & Smith, 2003), Sentence
Alignment (Moore, 2002), Extraction of Parallel Sentencesfrom Comparable Corpora (Munteanu et al.,
2004; Fung & Cheung, 2004), etc. Many approaches to monolingual tasks also take advantage of knowl-
edge learned from word alignments. Some examples are summarization (Dauḿe III & Marcu, 2005),

1



Figure 1.1: French/English gold standard word
alignment

Figure 1.2: French/English gold standard word
alignment (solid lines) and system hypothesis
(dashed lines)

query expansion for monolingual information retrieval (Xuet al., 2002; Riezler et al., 2007), paraphras-
ing (Pang et al., 2003; Quirk et al., 2004; Bannard & Callison-Burch, 2005), grammar induction (Kuhn,
2004), etc. The focus of this dissertation is on improving translation, but it is likely the work described
here will benefit the other tasks mentioned as well. At the current time, the word alignment models devel-
oped for annotating translational correspondence are the same models used in approaches to exploiting
corpora of parallel sentences for all of these tasks.

Automatic word alignment is not a solved problem. Many MT systems are trained in an alignment
process based on the IBM Model 4 word alignment model (Brown et al., 1993). This process involves
post-processing the output of Model 4 using heuristics. Whenevaluated on properly annotated gold
standard English/French data, which is a relatively easy language pair for automatic word alignment
systems, this approach has only69% balanced F-measure. F-measure is a trade-off between two factors,
called Precision and Recall. Precision is the percentage ofthe links we hypothesized which are actually
correct, and Recall is the percentage of the correct links which we hypothesized. Balanced F-Measure

2



is the geometric mean of these two numbers. The graph in Figure 1.2 shows a gold standard annotation
and a hypothesized annotation (marked by a dashed line). Note the errors. English “do not” should be
aligned to French “ne” and “pas” but “not” is aligned to “ne” while “do” is not aligned. The words “to
spend” should be aligned to “dépenser”, but only “spend” is aligned to “dépenser”. The word “british”
is aligned to “colombie” and “columbia” is aligned to “brittanique”. The Precision of this hypothesized
alignment, the number of correctly hypothesized links overthe total number of hypothesized links, is
13/15. The Recall of the hypothesized alignment, the number of correctly hypothesized links over the
number of correct links, is13/19. Balanced F-Measure (the geometric mean of Precision and Recall) is
77%, meaning that this hypothesis is better than the average hypothesis from this system. The desire to
improve automatic word alignment systems, so that there areless errors like these and therefore better
machine translation performance is obtained, motivates our work.

1.2 Problems with Current Practices in Word Alignment

1.2.1 Building Translation Systems with Word Alignments

Before we can show the problems with the most widely used unsupervised word alignment approach for
statistical machine translation (SMT), we need to briefly outline how SMT systems use word alignments.

SMT systems are usually broken down into two types of model, the translation model, which is a
model of translational correspondence between the source and target languages, and the language model,
which is a model of well-formed sentences in the target language. To translate a new source sentence,
we look for a probability maxima of these two models, i.e. we search for a target string which is both
a good mapping of the source string into a target string and isalso a well-formed target sentence. The
translation model is estimated using a word alignment of a bitext (a corpus of aligned sentences in the
source and target languages). The language model is estimated from monolingual target language text.
For further details on building SMT systems using alignments see Appendix B.1.

1.2.2 Unsupervised Alignments are Not the Best Alignments Possible for Translation

We would like to substantiate the claim that improved alignments will lead to improved MT systems.
We show that there exist alignments of a fixed bitext which aresignificantly better for translation than
the alignments generated by our unsupervised baseline system. We generate the improved alignments by
using an “oracle”, a system which tells our alignment systemhow to improve the alignments; it knows
how to do this by “cheating”. We measure statistical machinetranslation performance both when using
our baseline alignment system, and compare this with using a“weak oracle” in Figure 1.3. We do this by
using the BLEU metric (Papineni et al., 2001), which is an automatic translation evaluation metric which
measures translation quality. BLEU has been shown to correlate well with human judgments of quality.
The improved alignments from the “weak oracle” result in a BLEU score of 26.36; this is 3.30 points
better than the baseline which is a large improvement. This shows that improving alignments can improve
machine translation performance. See Appendix B.2 for a detailed explanation of this experiment. Even
determining a good oracle for this problem is difficult. Our “weak oracle” is not the upper bound on
performance. Given infinite computational resources we could find a “strong oracle” which would have
better performance. We graphically depict this in the figureas well but note that the BLEU score such a
“strong oracle” could obtain is unknown. We show later in thedissertation how to obtain improved word
alignments without using an oracle.

3



Figure 1.3: Comparison of baseline with a weak oracle showing that it is possible to improve MT per-
formance by improving word alignment

1.2.3 Existing Metrics Do Not Track Translation Quality

There have been many research papers presented at ACL, NAACL, HLT, COLING, WPT03, WPT05,
etc, outlining techniques for attempting to increase word alignment quality. However, although there
are many results where an alignment system has successfullyincreased the score according to intrinsic
metrics of word alignment quality, very few of these approaches has been shown to result in a large gain
in translation performance. We show that this is because thetwo intrinsic word alignment quality metrics
commonly used do not measure how useful alignments are for translation. These metrics are balanced
F-Measure (Melamed, 2000) and Alignment Error Rate, or AER,(Och & Ney, 2003). We calculate the
correlation between these metrics and the BLEU metric, and show that this correlation is low. A concise
mathematical description of correlation is the coefficientof determination (r2), which is the square of
the Pearson product-moment correlation coefficient (r). For an alignment task using a commonly studied
French/English data set,r2 = 0.16 for the Alignment Error Rate (AER) metric, showing a low correlation
with BLEU. For the same task and annotation, balanced F-Measure1 hasr2 = 0.20, which also shows a
low correlation with BLEU, see Chapter 2 for more details.

Chapter 2 presents a metric which has a high correlation withBLEU. This metric is shown to allow
the derivation of an effective loss function for semi-supervised training in Chapter 4.

1.2.4 Existing Generative Models Make False Structural Assumptions

Our objective is to automatically produce alignments whichcan be used to build high quality machine
translation systems. These are presumably close to the alignments that trained bilingual speakers pro-
duce. Human annotated alignments often contain M-to-N alignments, where several source words are
aligned to several target words and the resulting unit can not be further decomposed. Source or tar-
get words in a single unit are sometimes non-consecutive. Unfortunately, existing generative alignment
models can not model these alignments, because they make unrealistic assumptions about alignment
structure.

1This metric is referred to as “balanced F-Measure with Sure/Possible” later in the dissertation, see
Chapter 2.
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Figure 1.4: French/English gold standard word
alignment, example 1

Figure 1.5: French/English gold standard word
alignment, example 2

English Cept French Cept 1-to-1 1-to-N M-to-1 phrase-based M-to-N discontinuous
do not ne pas X

to spend dépenser X X X

we should il faudrait X X

take a look at examiner X X

Figure 1.6: The impact of alignment structure assumptions

Word alignments define minimal single or multi-word units intwo parallel sentences which corre-
spond to one another, which we will call “cepts” following Brown et al. (1993). Alignments for two
examples (created by shortening sentences observed in “development” data) are shown in Figures 1.4
and 1.5. We concentrate on several interesting minimal translational correspondences listed in Table 1.6.
The first two are taken from Figure 1.4 and the second two are taken from Figure 1.5. We now discuss
the different alignment structure assumptions which have been made in previous work.

The use of the 1-to-N assumption is widespread, probably because of the success of the IBM word
alignment models (Brown et al., 1993). 1-to-N alignments are alignments where one English word is
aligned to zero or more French words, which need not be consecutive. Consider the 1-to-N alignment
column in Table 1.6. In the first row, we see an example alignment which the IBM models are not able to
model. The English cept: “do not” is aligned to the French cept: “ne ... pas” (which is a French negation
construction), this is taken from Example 1 in Figure 1.4. This requires a many to many, discontinuous
alignment. This can not be modeled because under the 1-to-N assumption the English cept “do not” can
not be modeled as a unit. In fact, the 1-to-N assumption can not be used to model any of the multi-word
phrase mappings we have shown in Table 1.6. Of course, we can flip the direction and train such that one
French word is aligned to zero or more English words. However, upon examining the M-to-1 column of
Table 1.6, it becomes obvious that this assumption is also unsatisfactory. Many other generative models
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use the 1-to-N assumption, including the HMM model (Vogel etal., 1996) and other models based on
the HMM model, for example the work of Toutanova et al. (2002), Lopez and Resnik (2005) and Deng
and Byrne (2005).

What is done in practice in systems using the 1-to-N assumption of the IBM models is that the models
are trained in both directions (English to French and Frenchto English) and then “symmetrized” using a
heuristic (Och & Ney, 2003; Koehn et al., 2003). If we allow ourselves to consider the best possible 1-
to-N and M-to-1 alignments in Figures 1.4 and 1.5, can see several ways we might heuristically combine
a 1-to-N alignment with a M-to-1 alignment. However, for more disparate language pairs (or longer
French/English sentences), it is increasingly difficult todo this correctly. The use of a symmetrization
heuristic also makes it problematic to calculate the probability of a final combined alignment as it is
unclear how to combine the probabilities assigned by the twomodels.

There has also been a large amount of work on generative alignment models which model 1-to-1
word alignment structure (for instance the work of Wu (1997), Melamed (2000), Ahrenberg et al. (2000),
Cherry and Lin (2003) and Liang et al. (2006)). None of the examples we have chosen in Table 1.6 can
be modeled with this structure. These models have not been shown to perform for translation at the
quality level of heuristic symmetrization of the 1-to-N andM-to-1 alignments produced using the IBM
models. The claims made about the alignment quality for translation of these techniques are not well
founded because they are based only on intrinsic metrics which unfortunately do not track how useful
the generated alignments are for translation (as we discussed already in Section 1.2.3). 1-to-1 alignments
are not generally used in practice to build machine translation systems.

Another common assumption is the phrase-based assumption,which is also used in translation in
phrase-based MT systems (Och & Ney, 2004; Koehn et al., 2003). This assumption allows multiple
word units to align to one another, but enforces the constraint that all words must be consecutive. For
example, the Joint model (Marcu & Wong, 2002) typically aligns short segments of consecutive words to
each other obeying this assumption. These models do not model discontinuous alignments. As shown in
Table 1.6, this structure cannot be used to align the “ne ... pas” or “take a ... hard look” cepts in Examples
1 and 2 because they have gaps. Discontinuous alignments areimportant to achieve the best possible
performance in translation. The strong performance of the Hiero SMT model (Chiang, 2005), which
uses such discontinuous alignments directly in the translation process, offers direct evidence to support
this. Interestingly, even phrase-based SMT systems, whichare already less flexible than hierarchical
SMT systems in that they do not allow gaps in their translation rules, fair poorly when they are built
from alignments which obey the phrase-based alignment assumption2. That even phrase-based SMT
systems benefit from discontinuous alignments offers further evidence that discontinuous alignments are
important to translation performance.

Since 2005 there have been a number of discriminative modelsintroduced for the word alignment
problem. Surprisingly, these models have suffered from thesame structural assumptions. These models
have either themselves directly required an unreasonable structural assumption, such as the work of
Ittycheriah and Roukos (2005), Taskar et al. (2005), Liu et al. (2005), Fraser and Marcu (2006), Blunsom
and Cohn (2006) and Lacoste-Julien et al. (2006), or they have used features derived from a generative
model implemented with such a structural assumption in order to obtain the best performance, examples
include the work of Ayan and Dorr (2006b), Lacoste-Julien etal. (2006) and Moore et al. (2006). We will
discuss discriminative models in detail in Chapter 4 and focus in particular on the structural assumptions
made.

2For example, a phrase-based SMT system can not learn both that the English cept “hard” translates
as French “serieusement” and that the non-minimal “take a hard look at” translates as “examiner se-
rieusement” in Figure 1.5, unless the alignment is able to represent the gap in the English cept “take a ...
look at”, which violates the phrasal alignment assumption.
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The inability of current generative models to model many-to-many discontinuous alignments is an
important deficiency. We correct this problem. Our new generative model, LEAF, is able to model align-
ments which consist of many-to-many non-consecutive minimal translational correspondences directly,
without the use of heuristics. LEAF is presented in Chapter 3. We show how to derive features from
LEAF for use in a discriminative model in Chapter 4.

1.2.5 Many Existing Training Techniques Can Not Take Advantage of Manually
Annotated Data

Until recently, start of the art translation systems were trained using an unsupervised training process
which did not take advantage of manually annotated data. If we have access to a small amount of
annotated word alignment data, we can shift from viewing alignment as an unsupervised problem to
viewing alignment as a semi-supervised problem. In the lastfew years, this has become an active sub-
area of word alignment research, but the advances accordingto various intrinsic word alignment metrics
have not been shown to result in increased machine translation performance. Many research groups have
continued to use unsupervised techniques to generate word alignments. As we will show in Chapter 2,
this is because the loss criteria being used do not reflect theusefulness of the generated alignments for
machine translation.

In Chapter 4 we show that the alignment quality metric we willpresent in Chapter 2 is useful in the
derivation of a loss function for use in semi-supervised training. If we have access to a small aligned
set (we use up to 1,000 annotated sentence pairs), we can train a small number of important parameters
directly, and discriminatively smooth richer sub-models3 which would otherwise not be robustly esti-
mated. If we have access to even more annotated data (we recently acquired data where we have up
to 25,000 sentences), we can learn more parameters directly, but this is still only a fraction of the total
parameters we need to align large corpora (for instance, we currently work on a task which involves
aligning 10,000,000 parallel sentences which requires a very large number of parameters, most of which
can not be estimated from a small corpus of 25,000 sentences).

We formulate a new model which is trained in a semi-supervised fashion in Chapter 4. This model
uses rich features derived from our new generative model LEAF, but also allows for the easy integration
of new knowledge sources which would be difficult to add to a generative story. This leads to large
increases both in alignment accuracy (up to 9 F-score points) and translation accuracy (improvements of
up to 2.8 BLEU points) over strong baselines.

1.2.6 It is Difficult to Add New Knowledge Sources to Generative Models

Current generative models depend on complex generative stories which must be completely reengineered
each time a new knowledge source is added, blocking the easy introduction of new sources of linguistic
knowledge to improve translation.

Consider again Figure 1.2. One problem with the hypothesized alignment is that “british” is aligned
to “colombie” and “columbia” is aligned to “brittanique”. If we were able to easily incorporate a knowl-
edge source which used string similarity into our alignmentmodel we might be able to overcome this
problem. We show in Chapter 4 how to integrate a state of the art transliteration model used for the

3Sub-models are sometimes also referred to as feature functions in the literature. We call them sub-
models in our framework as a reminder that they themselves frequently have parameters which are esti-
mated empirically.

7



transliteration of names from Arabic to English. We also show how to incorporate a small fully su-
pervised model estimated from 25,000 sentences, as we discussed in the previous section. Most of the
approaches to discriminative word alignment models presented in the last two years, for example the
work of Liu et al. (2005), Ittycheriah and Roukos (2005), Taskar et al. (2005), Ayan and Dorr (2006b),
Lacoste-Julien et al. (2006), Fraser and Marcu (2006), Blunsom and Cohn (2006) and Moore et al.
(2006), have also addressed the problem of integrating disparate knowledge sources, which shows its
importance.

1.3 Dissertation Approaches in Brief

We have shown that improvements in word alignment quality can help MT performance in Section 1.2.2.
We present the problems we address and the approaches to solving them in brief:

1. As we discussed in Section 1.2.3, existing metrics for word alignment quality do not predict trans-
lation quality. To address this shortcoming, we describe a method for automatically measuring
alignment quality which is related to improvements in resulting translation quality. Determining
how to measure word alignment quality for automatic translation is addressed in Chapter 2.

2. As shown in Sections 1.2.4, existing generative models for word alignment make false structural
assumptions. To address this problem, we improve word alignment modeling by designing a sta-
tistical model which directly models the full structure of the word alignment problem. Improving
word alignment modeling with better structure is addressedin Chapter 3.

3. As discussed in Section 1.2.5 and 1.2.6 respectively, existing training techniques for word align-
ment models will not allow us to take advantage of manually annotated word alignments, and do
not allow for easy integration of new knowledge sources. To address this issue, we develop a new
semi-supervised training algorithm. This algorithm automatically takes advantage of whatever
quantity of manually annotated data can be obtained, allowsfor the robust training of powerful
models, and enables an easy integration of new knowledge sources. Improving word alignment
training using semi-supervised learning is addressed in Chapter 4.
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Chapter 2

Intrinsic Metrics for Measuring the Quality of Word Alignment for
Translation

Automatic word alignment plays a critical role in statistical machine translation. Unfortunately the re-
lationship between alignment quality and statistical machine translation performance has not been well
understood. In the recent literature, the alignment task has frequently been decoupled from the transla-
tion task and assumptions have been made about measuring alignment quality for machine translation
which, it turns out, are not justified. In particular, none ofthe tens of papers published over the last five
years have shown that significant decreases in Alignment Error Rate, AER (Och & Ney, 2003), result in
significant increases in translation performance. We explain this state of affairs and present a method for
measuring alignment quality in a way which is predictive of statistical machine translation performance.

2.1 Introduction

Automatic word alignment (Brown et al., 1993) is a vital component of all statistical machine translation
(SMT) approaches. There were a number of research papers presented from 2000 to 2005 at ACL,
NAACL, HLT, COLING, WPT03, WPT05, etc, outlining techniques for attempting to increase word
alignment quality. Despite this high level of interest, none of these techniques has been shown to result
in a large gain in translation performance as measured by BLEU (Papineni et al., 2001) or any other
translation quality metric. We find this lack of correlationbetween previous word alignment quality
metrics and BLEU counter-intuitive, because we and other researchers have measured this correlation
in the context of building SMT systems that have benefited from using the BLEU metric in improving
performance in open evaluations such as the NIST evaluations.1

1Since in our experiments we use BLEU to compare the performance of systems built using a com-
mon framework where the only difference is the word alignment, we make no claims about the utility of
BLEU for measuring translation quality in absolute terms, nor its utility for comparing two completely
different MT systems. We only assume that BLEU tracks translation quality differences caused by the
effects of different word alignments of a fixed bitext. This is a much less general assumption than as-
suming that BLEU can be used to compare, for instance, a rule-based system and a statistical machine
translation system, or two statistical machine translation systems which were trained on differing bitext
and/or monolingual text. We argue that any systematic changes to the alignments which result in better
BLEU scores on an unseen test set (i.e. changes which are madewithout examination of that test set)
must be viewed as improvements to the alignments for the automatic translation task.
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We confirm experimentally that previous metrics do not predict BLEU well and develop a method-
ology for measuring alignment quality which is predictive of BLEU. We also show that AER is not
correctly derived from F-Measure and is therefore unlikelyto be useful as a metric.

2.2 Experimental Methodology

2.2.1 Data

To build an SMT system we require a bitext and a word alignmentof that bitext, as well as language
models built from target language data. In all of our experiments, we will hold the bitext and target
language resources constant, and only vary how we constructthe word alignment.

The gold standard word alignment sets we use have been manually annotated using links between
words showing minimal translational correspondences. Links which must be present in a hypothesized
alignment are called “Sure” links. Some of the alignment sets also have links which are not “Sure” links
but are “Possible” links (Och & Ney, 2003). “Possible” linkswhich are not “Sure”2 may be present but
need not be present.

We evaluate the translation performance of SMT systems by translating a held-out translation test set
and measuring the BLEU score of our hypothesized translations against one or more reference transla-
tions. We also have an additional held-out translation set,the development set, which is employed by
the MT system to train the weights of its log-linear model to maximize BLEU (Och, 2003). We work
with data sets for three different language pairs, examining French to English, Arabic to English, and
Romanian to English translation tasks.

The training data for the French/English data set is taken from the LDC Canadian Hansards data set,
from which the word aligned data (presented by Och and Ney (2003)) was also taken. The English side
of the bitext is 67.4 million words. We used a separate Canadian Hansards data set (released by ISI)
as the source of the translation test set and development set. We evaluate two different tasks using this
data, a medium task where 1/8 of the data (8.4 million Englishwords) is used as the fixed bitext, and a
large task where all of the data is used as the fixed bitext. The484 sentences in the gold standard word
alignments have 4,376 Sure Links and 19,222 Possible links.See alignment set A in Table 2.1 for the
data statistics (note that alignment sets B and C will be introduced later).

The Arabic/English training corpus is the data used for the NIST 2004 machine translation evalu-
ation3. The English side of the bitext is 99.3 million words. The translation development set is the
“NIST 2002 Dry Run”, and the test set is the “NIST 2003 evaluation set”. We have annotated gold stan-
dard alignments for 100 parallel sentences using Sure links, following the Blinker guidelines (Melamed,
1998) which calls for Sure links only (there were 2,154 Sure links). Here we also examine a medium
task using 1/8 of the data (12.4 million English words) and a large task using all of the data. Note that we
had four references available for the translation test set and translation development set (used for train-
ing Maximum BLEU), which allowed the use of less test sentences than for the other data sets where
we used much larger translation development and test sets because we only had access to one reference
translation. See Table 2.2 for the data statistics.

The Romanian/English training data was used for the tasks onRomanian/English alignment at WPT03
(Mihalcea & Pederson, 2003) and WPT05 (Martin et al., 2005). We carefully removed two sections of
news bitext to use as the translation development and test sets. The English side of the training corpus

2“Sure” links are by definition also “Possible”.
3http://www.nist.gov/speech/tests/summaries/2004/mt04.htm
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Table 2.1: French/English Dataset

FRENCH ENGLISH

MEDIUM TRAINING

SENTENCES 355,273
WORDS 9,487,633 8,438,050

VOCABULARY 65,239 49,121
SINGLETONS 25,622 19,253

LARGE TRAINING

SENTENCES 2,842,184
WORDS 75,794,254 67,366,819

VOCABULARY 149,568 114,907
SINGLETONS 60,651 47,765

TRANSLATION DEV
SENTENCES 833

WORDS 20,562 17,454

TRANSLATION TEST
SENTENCES 2,380

WORDS 58,990 49,182

ALIGNMENT SET A

SENTENCES 484
WORDS 8,482 7,681

SURE L INKS 4,376
POSSIBLEL INKS 19,222

ALIGNMENT SET B

SENTENCES 110
WORDS 1,888 1,726

SURE L INKS 1,037
POSSIBLEL INKS 3,989

ALIGNMENT SET C
SENTENCES 110

WORDS 1,888 1,726
SURE L INKS 2,292

is 964,000 words. The gold standard alignment set is the first148 annotated sentences used for the 2003
task (there were 3,181 Sure links). For the data statistics see Table 2.3.

2.2.2 Measuring Translation Performance Changes Caused By Alignment

In phrased-based SMT (Koehn et al., 2003) the knowledge sources which vary with the word alignment
are the phrase translation lexicon (which maps source phrases to target phrases using counts from the
word alignment) and some of the word level translation parameters (sometimes called lexical smoothing).
However, many knowledge sources do not vary with the final word alignment, such as scores assigned
using IBM Model 1, N-gram language models and the length penalty. In our experiments, we use a state
of the art phrase-based system, similar to (Koehn et al., 2003). The weights of the different knowledge
sources in the log-linear model used by our system are trained using Maximum BLEU (Och, 2003),
which we run for 25 iterations individually for each system.Two language models are used, one built
using the target language training data and the other built using additional news data.

2.2.3 Generating Alignments of Varying Quality

We have observed in the past that generative models used for statistical word alignment create alignments
of increasing quality as they are exposed to more data. The intuition behind this is simple; as more co-
occurrences of source and targets words are observed, the word alignments are better. If we wish to
increase the quality of a word alignment, we allow the alignment process access to extra data which is
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Table 2.2: Arabic/English Dataset

ARABIC ENGLISH

MEDIUM TRAINING

SENTENCES 482,965
WORDS 11,218,869 12,424,253

VOCABULARY 185,441 77,298
SINGLETONS 81,565 34,645

LARGE TRAINING

SENTENCES 3,863,718
WORDS 89,705,083 99,326,492

VOCABULARY 426,746 191,349
SINGLETONS 143,552 77,430

TRANSLATION DEV
SENTENCES 203

WORDS 5,039 6.4KTO 7.0K

TRANSLATION TEST
SENTENCES 663

WORDS 16,491 19.0KTO 21.7K

ALIGNMENT SET

SENTENCES 100
WORDS 1,747 2,029

SURE L INKS 2,154

Table 2.3: Romanian/English Dataset

ROMANIAN ENGLISH

SMALL TRAINING

SENTENCES 45,241
WORDS 913,806 963,615

VOCABULARY 44,390 24,918
SINGLETONS 18,865 8,473

TRANSLATION DEV
SENTENCES 800

WORDS 15,864 16,896

TRANSLATION TEST
SENTENCES 2,400

WORDS 46,740 48,758

ALIGNMENT SET

SENTENCES 148
WORDS 2,773 2,875

SURE L INKS 3,181

used only during the alignment process and then removed. If we wish to decrease the quality of a word
alignment, we divide the bitext into pieces and align the pieces independently of one another, finally
concatenating the results together.

To generate word alignments we use GIZA++ (Och & Ney, 2003), which implements both the IBM
Models (Brown et al., 1993) and the HMM word alignment model (Vogel et al., 1996). We use Model 1,
HMM, and Model 4 in that order. The output of these models is analignment of the bitext which projects
one language to another. GIZA++ is run end-to-end twice. In one case we project the source language to
the target language (producing the “1-to-N” alignment), and in the other we project the target language to
the source language (producing the “M-to-1” alignment). The output of GIZA++ is then post-processed
using the three “symmetrization heuristics” described by Och and Ney (2003), “Union”, “Intersection”
and “Refined”. We evaluate our approaches using these heuristics because we would like to account for
alignments generated in different fashions. These three heuristics were used as the baselines in virtually
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Figure 2.1: All of these alignments are equivalent from a translational correspondence perspective

all recent work on automatic word alignment, and many of the best SMT systems use these techniques
as well.

The “Union” heuristic simply combines the links in the 1-to-N alignment with the links in the M-
to-1 alignment, and usually has a higher recall than either of the starting alignments. The “Intersection”
heuristic takes only those links occurring in both alignments, and usually results in a higher precision
than either of the starting alignments. The “Refined” symmetrization heuristic starts from the intersection
of the two alignments and adds links from the union, and usually has higher precision than the union of
the 1-to-N and M-to-1 alignments and higher recall than the intersection of these alignments.

We describe the “Refined” symmetrization heuristic in further detail. The first step in applying the
heuristic is to take the intersection of the 1-to-N and M-to-1 alignments and store the links into a set
A. We then take the union of the 1-to-N and M-to-1 alignments and subtractA, resulting in a setA′

of the links in only one of the two alignments. Each link inA′ is then considered for addition toA. A
link (i, j) connecting the source word at positioni with the target word at positionj is added toA if a
“neighboring” link is already inA, and subject to an additional constraint which we will describe. The
“neighboring” links to(i, j) are the links(i, j + 1), (i, j − 1), (i+ 1, j) and(i− 1, j). The constraint is
that the addition of(i, j) must not result inA containing any link(i′, j′) such that both the source word
at i′ and the target word atj′ are involved in more than one link inA. Once no further link addition
can be performed,A is returned as the result. In practice, an implementation expands outwards from
each link in the intersection, and requires defining both theorder in which the links in the intersection
are visited, and the order in which the neighbors to a visitedlink are checked for addition. The usage
of the “Refined” symmetrization heuristic results in a symmetrized alignment consisting of minimal
translational correspondences which are either 1-to-N or M-to-1 and consist of consecutive words only.

In this work, when applying the “Union” symmetrization heuristic we take the transitive closure of
the bipartite graph created, which results in fully connected components indicating minimal translational
correspondence4. All of the alignments in Figure 2.1 are equivalent from a translational correspondence
perspective and the first two will be mapped to the third in order to ensure consistency between the
number of links an alignment has and the translational equivalences licensed by that alignment.

2.3 Word Alignment Quality Metrics

2.3.1 Alignment Error Rate is Not a Useful Measure

We begin our study of metrics for word alignment quality by testing Alignment Error Rate (AER) (Och
& Ney, 2003). AER requires a gold standard manually annotated set of Sure links and Possible links

4We have no need to do this for the “Refined” and “Intersection”heuristics, because they only produce
alignments in which the components are already fully connected.
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(referred to asS andP ). Given a hypothesized alignment consisting of the link setA, three measures
are defined:

Precision(A,P ) =
|P ∩A|

|A|
if (/A/ > 0), 1 otherwise (2.1)

Recall(A,S) =
|S ∩A|

|S|
if (/S/ > 0), 1 otherwise (2.2)

AER(A,P, S) = 1 −
|P ∩A| + |S ∩A|

|S| + |A|
if ((/S/+ /A/) > 0), 0 otherwise (2.3)

Och and Ney’s definition of Precision measures the percentage of links in our hypothesized set which
are Possible (note that Precision decreases from 1 only as links which are not even Possible are hypoth-
esized, and note that all Sure links are by definition Possible). Recall measures the percentage of the
links in the Sure set which have been hypothesized (note thatPossible links may either be hypothesized
or not hypothesized, this does not affect Recall). In order for a hypothesis to be 100% correct (i.e. have
Precision=1 and Recall=1), all of the links in the Sure set must be hypothesized, and any additional links
hypothesized must be in the Possible set.

In our graphs, we will present1 − AER so that we have an accuracy measure.
We created alignments of varying quality for the medium French/English training set. We broke

the parallel text into separate pieces corresponding to 1/16, 1/8, 1/4 and 1/2 of the original parallel text
to generate degraded alignments, and we used 2, 4, and 8 timesthe original parallel text to generate
enhanced alignments. In all cases we use only the alignment of the original parallel text to build a MT
system for measuring BLEU. For the “fractional” alignmentswe report the average AER of the pieces5.

The graph in Figure 2.2 shows the correlation of1 − AER with BLEU. High correlation would look
like a line from the bottom left corner to the top right corner. As can be seen by looking at the graph,
there is low correlation between1 − AER and the BLEU score. A concise mathematical description of
correlation is the coefficient of determination (r2), which is the square of the Pearson product-moment
correlation coefficient (r). Here,r2 = 0.16, which is low.

The correlation is low because of a significant shortcoming in the mathematical formulation of AER
which to our knowledge has not been previously reported. Ochand Ney (2003) state that AER is derived
from F-Measure. But AER does not share a very important property of F-Measure, which is that unbal-
anced precision and recall are penalized, whereS ⊂ P (i.e. when we make the Sure versus Possible
distinction, meaning thatS is a proper subset ofP )6. We will show this using an example.

We first define the measure “F-Measure with Sure and Possible”using Och and Ney’s Precision and
Recall formulas together with the standard F-Measure formula (Rijsbergen, 1979). In the F-Measure
formula (2.4) there is a parameterα which sets the trade-off between Precision and Recall. When an
equal trade-off is desired,α is set to0.5.

5For example, for 1/16, we perform 16 pairs of alignments (a pair of alignments is a 1-to-N alignment
and a M-to-1 alignment), each of which includes the full goldstandard text. We perform another 16 pairs
of alignments without the gold standard text. We then apply the symmetrization heuristics to each these
pairs. We use the symmetrized alignments including the textfrom the gold standard set to measure AER
and take the average. We concatenate the symmetrized alignments not including the gold standard text
to build SMT systems for measuring BLEU.

6Note that ifS = P then 1-AER reduces to balanced F-Measure
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F-measure with Sure and Possible(A,P, S, α) =
1

α

Precision(A,P )
+ (1−α)

Recall(A,S)

(2.4)

We compare two hypothesized alignments where|A|, the number of hypothesized alignment links,
is the same; for instance,|A| = 100. Let |S| = 100. In the first case, let|P ∩A| = 50 and|S ∩A| = 50.
Precision is0.50 and Recall is0.50. In the second case, let|P ∩A| = 75 and|S ∩A| = 25. Precision is
0.75 and Recall is0.25.

The basic property of F-Measure, if we setα equal to0.5, is that unbalanced precision and recall
should be penalized. The first hypothesized alignment has anF-Measure with Sure and Possible score of
0.50, while the second has a worse score,0.375.

However, if we substitute the relevant values into the formula for AER (Equation 2.3), we see that
1 − AER for both of the hypothesized alignments is0.5. Therefore AER does not share the property of
F-Measure (withα = 0.5) that unbalanced precision and recall are always penalized. Because of this, it
is possible to maximize AER by favoring precision over recall, which can be done by simply guessing
very few alignment links. Unfortunately, whenS ⊂ P , this leads to strong biases, which makes AER
not useful as a metric.

Goutte et al. (2004) previously observed that AER could be unfairly optimized by using a bias
towards precision which was unlikely to improve the usefulness of the alignments. Possible problems
with AER were discussed at WPT 2003 and WPT 2005.

Examining the graph in Figure 2.3, we see that F-Measure withSure and Possible has some predictive
power for the data points generated using a single heuristic, but the overall correlation is still low,r2 =
0.20. We need a measure which predicts BLEU without having a dependency on the way the alignments
are generated.

2.3.2 Balanced F-Measure is Better, but Still Inadequate

We wondered whether the low correlation was caused by the Sure and Possible distinction. We re-
annotated the first 110 sentences of the French test set usingthe Blinker guidelines (Melamed, 1998),
there were 2,292 Sure links. This is alignment set C in Table 2.1. We define F-Measure without the Sure
versus Possible distinction (i.e., all links are Sure) in Equation 2.5, and setα = 0.5. This measure has
been extensively used with other word alignment test sets. Figure 2.4 shows the results. Correlation is
higher,r2 = 0.67.

F-measure(A,S, α) =
1

α

Precision(A,S)
+ (1−α)

Recall(A,S)

(2.5)

2.3.3 Varying the Trade-off Between Precision and Recall Works Well

We then hypothesized that the trade-off between precision and recall is important. This is controlled in
both formulas by the constantα. We searchedα = 0.1, 0.2, ..., 0.9 for the bestr2 value. The best results
were:α = 0.1 for the original annotation annotated with Sure and Possible (see Figure 2.5), andα = 0.4
for the first 110 sentences as annotated by us (see Figure 2.6)7. The relevantr2 scores were0.80 and
0.85 respectively. With a goodα setting, we are able to predict the machine translation results reasonably

7We also checked the first 110 sentences using the original annotation to ensure that the differences
observed were not an effect of restricting our annotation tothese sentences, see alignment set B in Table
2.1
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well. For the original annotation, recall is very highly weighted, while for our annotation, recall is still
more important than precision8. Our results also suggest that better correlation will be achieved when
using Sure-only annotation than with Sure and Possible annotation.

We then tried the medium Arabic training set. Results are shown in figure 2.8, the best setting of
α = 0.1, andr2 = 0.93. F-Measure is effective in predicting machine translationperformance for this
set.

We also tried the larger tasks, where we can only decrease alignment quality as we have no additional
data. For the large French/English corpus the best results are withα = 0.2 for the original annotation
of 484 sentences andα = 0.4 for the new annotation of 110 sentences with only Sure links (see Figure
2.7). Relevantr2 scores were0.62 and0.64 respectively. Disappointingly, our measures are not able to
fully explain MT performance for the large French/English task.

For the large Arabic/English corpus, the results were better, the best correlation was atα = 0.1, for
whichr2 = 0.90 (see Figure 2.9). We can predict MT performance for this set.It is worth noting that the
Arabic/English translation task and data set has been tested in conjunction with our translation system
over a long period, but the French/English translation taskand data has not. As a result, there may be
hidden factors that affect the performance of our MT system which only appear in conjunction with the
large French/English task.

One well-studied task on a smaller data set is the Romanian/English shared word alignment task
from the Workshop on Parallel Text at ACL 2005 (Martin et al.,2005). We only decreased alignment
quality and used 5 data points for each symmetrization heuristic due to the small bitext. The best setting
of α wasα = 0.2, for whichr2 = 0.94 (see Figure 2.10), showing that F-Measure is again effective in
predicting BLEU.

2.4 Previous Work

Most previous work on measuring alignment quality has focused on comparison of a hypothesis with a
gold standard word alignment using some type of distance metric, much as our work does. The differ-
ences between these studies have focused primarily on the weighting of the links in a single minimal
translational correspondence, examining how each of the word level links should be weighted (e.g.,
should the link in a 1-to-1 correspondence be considered to have equal weight with one of the links in
a 1-to-2 correspondence, or should it have the same weight asboth combined? How should the links
in a 2-to-2 correspondence, which involves four links at theword level, be weighted?). Based on our
investigations this does not appear to be as important as thetrade-off between the loss involved in pre-
dicting incorrect links versus the loss involved in not predicting correct links which is tuned usingα in
the F-Measure formula. Melamed (2000) has a formula for weighting the links in large minimal units
of translation to avoid giving these units too much weight. The basic idea of this metric is that the sum
of all links to a word should have a constant weight. Och and Ney (2003) claim that using the Sure and
Possible links defined for F-measure with Sure and Possible helps determine how to correctly weight
non-compositional links, but our experiments cast doubt onwhether this is necessary because we have
shown evidence that F-Measure with Sure and Possible is not more effective than simple F-Measure.
Other approaches to dealing with non-compositional links have been tried. Davis (2002) has a metric
similar to Melamed’s which implements the same weighting idea of words having constant weight, but
in a simpler fashion. Ahrenberg et al. (2000) develop simplelink precision/recall as the basis for a metric
to evaluate the alignment of multiple English words to the large compound words which are common in

8α less than0.5 weights recall higher, whileα greater than0.5 weights precision higher, see the
F-Measure formulas.
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Figure 2.2: French1 − AER versus BLEU,r2 =
0.16

Figure 2.3: French F-Measure with Sure and Pos-
sibleα = 0.5 versus BLEU,r2 = 0.20

Figure 2.4: French F-Measureα = 0.5 versus
BLEU, r2 = 0.67

Figure 2.5: French F-Measure with Sure and Pos-
sibleα = 0.1 versus BLEU,r2 = 0.80

Figure 2.6: French F-Measureα = 0.4 versus
BLEU, r2 = 0.85

Figure 2.7: Large French F-Measureα = 0.4 (110
sentences) versus BLEU,r2 = 0.64
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Figure 2.8: Arabic F-Measureα = 0.1 versus
BLEU, r2 = 0.93

Figure 2.9: Large Arabic F-Measureα = 0.1 (100
sentences) versus BLEU,r2 = 0.90

Figure 2.10: Small Romanian F-Measureα = 0.2
(148 sentences) versus BLEU,r2 = 0.94

Germanic languages such as Swedish and German. None of thesemetrics have been shown to be useful
extrinsically, for measuring machine translation performance or measuring performance for any other
task. These metrics do have one advantage over F-Measure, which is that they do not require tuning
theα parameter for each new task. However, our results show that the best trade-off between Precision
and Recall varies by alignment task, so varying this trade-off will likely be required in any successful
approach involving comparison of hypothesized word links with a gold standard.

There are also approaches to measuring word alignment quality which do not involve using a gold
standard word alignment of a small sample of parallel sentences, but instead building a translation lexicon
from the whole alignment. Wu and Xia (1995) sample the translation lexicon and uses both manual and
automatic filters to measure precision. Melamed (2000) takes a sample from the translation lexicon and
measures probability weighted precision manually, and then he uses this to estimate probability weighted
recall. Koehn and Knight (2002) evaluate a translation lexicon by counting how many of the entries are
found in a dictionary, which we find interesting as it is automatic, but it is limited as dictionary entries
will likely only exist for matches between the frequent senses of content words (without accompanying
function words). The commonality of these approaches lies in using an abstract implicit context, whether
that used for the translation dictionary or that used in a manual evaluation, where the evaluators directly
judge translational correspondence without observing thecontext in which the presumed correspondence
occurs. Our approach is superior, at least for the task of data driven machine translation, in that it
evaluates alignment accuracy in the observed context of parallel sentences where many of the minimal
translational correspondences are only contextually motivated and would not apply to all contexts. We
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expect our translation system to learn not only idealized translations applicable in any context, which are
what is found in a translation dictionary, but also translations which are contextually motivated and may
apply only in certain contexts. If we do not learn the latter type of translations we are failing to take full
advantage of our (limited) training data.

Appearing somewhat later than our study, two recent papers have looked at the relationship between
alignment accuracy and translation performance. Lopez andResnik (2006) looked at the impact of align-
ments on phrase-based MT for a Chinese/English task using 30M words of English and 27M words of
Chinese. We found this study interesting in that it showed evidence that phrase-based MT systems be-
come less sensitive to alignment quality as training size increases, which we also found in our study.
This appears to be due to a saturation of the parameters in basic phrase-based MT models which do not
model context as richly as newer approaches such as hierarchical models and supervised syntactic mod-
els. Ayan and Dorr (2006a) looked at the same trade-off between Precision and Recall that we examined.
They study small alignment tasks for Chinese/English (4.1 MEnglish words) and Arabic/English (1.4 M
English words). This work only considered a single lower recall alignment and a single lower precision
alignment along with three other alignments. One of the contributions is the definition of an error metric
called CPER, which equally weights Precision and Recall over phrases extracted from the hypothesized
alignment with respect to phrases extracted from the gold alignment, but unfortunately they were unable
to show that this metric is an effective predictor of MT performance. Both of these studies are limited
to generalizations about phrase-based MT models for small to medium sized tasks. As we will show in
Chapter 4, our metric can be used to derive a loss function to produce not only improved alignments for
phrase-based MT but also improved alignments for hierarchical and supervised syntactic MT models,
which use richer context and more structure than phrase-based MT and are therefore more likely to be
affected by alignment quality at large training data sizes.Additionally, we have shown that there is not a
single best trade-off between Precision and Recall for all alignment tasks, but instead there is a signifi-
cant difference in the best trade-off depending on the task.For instance, our research shows that the best
results for large Chinese/English tasks tend to favor balanced Precision and Recall, a finding which is not
inconsistent with the observation of Ayan and Dorr (2006a) on small Chinese/English data tasks. How-
ever, obtaining the best results for large Arabic/English tasks requires strongly favoring Recall, which is
opposite the conclusion for small Arabic/English tasks reached by Ayan and Dorr (2006a).

Our work invalidates some of the conclusions of recent alignment work which presented only eval-
uations based on metrics like AER or balanced F-Measure, andexplains the lack of correlation in the
few works which presented both such a metric and final MT results. A good example of the former are
our own results (Fraser & Marcu, 2005). The work presented there had the highest balanced F-Measure
scores for the Romanian/English WPT05 shared task, but basedon the findings here it is possible that
a different alignment algorithm tuned for the correct criterion would have had better MT performance.
Other work includes many papers working on alignment modelswhere words are allowed to participate
in a maximum of one link. These models generally have higher precision and lower recall than IBM
Model 4 symmetrized using the “Refined” or “Union” heuristics. But we showed that AER is broken
in a way that favors precision in Section 2.3.1. It is therefore likely that the results reported in these
papers are affected by the AER bias and that the corresponding improvements in AER score do not cor-
relate with increases in phrasal SMT performance. We will show further evidence that F-Measure with a
tuned trade-off between Precision and Recall is effective by using this metric to derive a loss criterion in
discriminative modeling in Chapter 4.

While we have addressed measuring alignment quality for phrasal SMT, similar work is now required
to see how to measure alignment quality for other tasks. For an evaluation campaign the organizers
should pick a specific task, such as improving phrasal SMT, and calculate an appropriateα to be used.
Individual researchers working on the same phrasal SMT tasks as those reported on here (or very similar
tasks) could use the values ofα we calculated.
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2.5 Summary

We have presented an empirical study of the use of simple evaluation metrics based on gold standard
alignment of a small number of sentences to predict machine translation performance. Based on our
experiments we can now draw the following conclusions:

1. We measured the correlation between our unbalanced F-Measure metric and BLEU. Good corre-
lation was obtained for the medium French and Arabic data sets, the large Arabic data set and the
small Romanian data set. We have explained most of the effectof alignment quality on these sets,
and if we are given the F-measure of a hypothesized word alignment for the bitext we can make a
reasonable prediction as to what the resulting BLEU score will be.

2. We recommend using the Blinker guidelines as a starting point for new alignment annotation
efforts, and that Sure-only annotation be used. If a larger gold standard is available and was
already annotated using the Sure versus Possible distinction, this is likely to have only slightly
worse results.

3. When we make the distinction between Sure and Possible links, AER does not share the important
property of F-Measure that unequal precision and recall arepenalized, making it easy to obtain
good AER scores by simply guessing less alignment links. As aresult AER is a misleading metric
which should no longer be used.

We suggest comparing alignment algorithms by measuring performance in an identified final task
such as machine translation. F-Measure with an appropriatesetting ofα will be useful during the devel-
opment process of new alignment models, or as a maximizationcriterion for discriminative training of
alignment models. We will return to the topic of discriminative training in Chapter 4, where we will use
our new metric to derive a loss function in conjunction with asemi-supervised training algorithm, and
show that this improves translation quality.

2.6 Research Contribution

We found an automatic intrinsic metric which measures word alignment quality for the translation task
in a better fashion than the currently used metrics.

In addition, this metric will be shown to be useful to derive aloss function for semi-supervised
training in Chapter 4.
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Chapter 3

Improving Structural Assumptions with a New Many-to-Many
Discontinuous Generative Alignment Model

Previous generative word alignment models have made unreasonable assumptions about the desired word
alignment structure, which do not match the alignment structure used to build statistical machine trans-
lation systems. Previous discriminative models have either made such an assumption directly or used
features derived from a generative model making one of theseassumptions.

Two incorrect word alignment structures are particularly common. The first is the 1-to-N assumption,
meaning that each source word generates zero or more target words, which requires heuristic techniques
in order to obtain alignments suitable for training a SMT system. The second is the consecutive word-
based “phrasal SMT” assumption. This does not allow gaps in minimal translation correspondences. We
discussed the problems with these word alignment structureassumptions in Section 1.2.4, and we will
discuss these issues further in Section 3.6, which outlinesprevious work on generative models of word
alignment.

Our objective is to automatically produce alignments whichcan be used to build high quality ma-
chine translation systems. These are presumably close to the alignments that trained bilingual speakers
produce. Human annotated alignments often contain M-to-N alignments, where several source words
are aligned to several target words and the resulting unit can not be further decomposed. Source or target
words in a single unit are sometimes non-consecutive.

We describe a new generative model, LEAF, which directly models M-to-N non-consecutive word
alignments.

3.1 Introduction

For ease of exposition, the source language for the translation task is referred to as “French”, and the
target language is referred to as “English”, although thesecan be any language pairs in practice. The
translation problem is defined as given a French stringf , find the English strinĝe, and is presented in
Equation 3.1.

ê = argmax
e

Pr(e|f) = argmax
e

Pr(e) ∗ Pr(f |e) (3.1)

The variablee represents any potential English string made up of English words.Pr(e) represents
the true distribution over English strings.Pr(f |e) represents the true distribution over French strings
generated from English strings.

ConsiderPθ(f |e) to be a model ofPr(f |e). If we introduce a hidden variablea representing word
alignments, we can sum over all possible alignments, as in Equation 3.2.
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Pθ(f |e) =
∑

a

Pθ(f, a|e) (3.2)

For our task, which is word alignment annotation, we have fixed stringsf ande, and we wish to
select the best alignment according to the model,â, which we do in Equation 3.3. This alignment is
called the Viterbi alignment.

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (3.3)

We will subsequently drop theθ subscript when calculating probabilities according to themodel.
Note that generative word alignment models often model the probability of stochastically generating
the French string from the English string. This is the reverse direction of the translation task, and is
motivated by the noisy channel formulation which is the right-most term in Equation 3.1. For this reason
we will refer to English as the “source” language and French as the “target” language subsequently in
this chapter, as is standardly done in the word alignment literature.

3.2 LEAF: A Generative Word Alignment Model

3.2.1 Generative Story

We introduce a new generative story which enables the learning of non-consecutive M-to-N alignment
structure. We use the same notation as the generative story for Model 4 (Brown et al., 1993), which
we are extending, where this is possible. The reader may find it useful to consult Appendix A for a
discussion of Model 4.

The LEAF generative story describes the stochastic generation of a target stringf (sometimes re-
ferred to as the French string, or foreign string) from a source stringe (sometimes referred to as the
English string), consisting ofl words. The variablem is the length off . We generally use the indexi to
refer to source words (ei is the English word at positioni), andj to refer to target words.

Our generative story makes the distinction between different types of source words. There are head
words, non-head words, and deleted words. Similarly, for target words, there are head words, non-head
words, and spurious words. A head word is associated with zero or more non-head words; each non-
head word is associated with exactly one head word. The purpose of head words is to try to provide a
robust representation of the semantic features necessary to determine translational correspondence. This
is similar to the use of syntactic head words in statistical parsers to provide a robust representation of
the syntactic features of a parse sub-tree. However, an important difference is that in current training ap-
proaches the head words are not determined using supervision (annotated training data) or hand-written
rules, but instead estimated in an unsupervised fashion.

A minimal translational correspondence consists of a linkage between a source head word and a tar-
get head word (and by implication, the non-head words which they are associated with). Each head word
is involved in exactly one such link. Deleted source words are not involved in a minimal translational
correspondence, as they were “deleted” by the translation process. Spurious target words are also not in-
volved in a minimal translational correspondence, as they spontaneously appeared during the generation
of other target words.

Figure 3.1 shows a simple example of the stochastic generation of a French sentence from an English
sentence, annotated with the step number in the generative story, which we present next.

In specifying the generative story we will introduce some new notation. We use the three word classes
classe, classf , and classh to reduce the dimensionality of the English vocabulary, theFrench vocabulary
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and the French head word vocabulary respectively. To define the distortion model we use two notational
tools: ρi is the previous English head word to the English head word ati; andcz is the “center” of the
French cept, the average of the positions of the words in the cept, whose head word is linked with the
English head word at positionz.
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1. Choose the source word type.

for eachi = 1, 2, ..., l choose a word typeχi = −1 (non-head word),χi = 0 (deleted word) or
χi = 1 (head word) according to the distributiong(χi|ei)

let χ0 = 1

2. Choose for each non-head word the identity of the head wordit is associated with

for eachi = 1, 2, ..., l if χi = −1 choose the position of the associated head wordµi for the
non-head wordei according to the distributionw−1(µi − i|classe(ei))

for eachi = 1, 2, ..., l if χi = 1 let µi = i

for eachi = 1, 2, ..., l if χi = 0 let µi = 0

* for eachi = 1, 2, ..., l if χµi
6= 1 return “failure”

3. Choose the identity of the generated target head word for each source head word

for eachi = 1, 2, ..., l if χi = 1 chooseτi1 according to the distributiont1(τi1|ei)

4. Choose the number of words in each target cept. This is conditioned on the identity of the source
head word from which the target head word was generated and the source cept size (γi is 1 if the
cept size is 1, and 2 if the cept size is greater than 1)

for eachi = 1, 2, ..., l if χi = 1 choose a target cept sizeψi according to the distribution
s(ψi|ei, γi)

for eachi = 1, 2, ..., l if χi < 1 letψi = 0

5. Choose the number of spurious words.

chooseψ0 according to the distributions0(ψ0|
∑

i ψi)

letm = ψ0 +
∑l
i=1 ψi

6. Choose the identity of the spurious words.

for eachk = 1, 2, ..., ψ0 chooseτ0k according to the distributiont0(τ0k)

7. Choose the identity of the target non-head words associated with each target head word.

for eachi = 1, 2, ..., l and for eachk = 2, 3, ..., ψi chooseτik according to the distribution
t>1(τik|ei, classh(τi1))

8. Choose the position of the target head and non-head words.

for eachi = 1, 2, ..., l and for eachk = 1, 2, ..., ψi choose a positionπik as follows:

• if k = 1 chooseπi1 according to the distributiond1(πi1 − cρi
|classe(eρi

), classf (τi1))

• if k = 2 chooseπi2 according to the distributiond2(πi2 − πi1|classf (τi1))

• if k > 2 chooseπik according to the distributiond>2(πik − πik−1|classf (τi1))

* if any position was chosen twice, return “failure”

9. Choose the position of the spuriously generated words.

for eachk = 1, 2, ..., ψ0 choose a positionπ0k from ψ0 − k + 1 remaining vacant positions in
1, 2, ...,m according to the uniform distribution

let f be the stringfπik = τik

25



We note that the steps which return “failure” (the two steps marked with a “*” in the generative story)
are required because the model is deficient. Deficiency meansthat a portion of the probability mass in the
model is allocated towards generative stories which would result in infeasible alignment structures. Our
model has deficiency in the non-spurious target word placement, just as Model 4 does. It has additional
deficiency in the source word linking decisions. Och and Ney (2003) presented results suggesting that
the additional parameters required to ensure that a model isnot deficient result in inferior performance,
but we plan to study whether this is the case for our generative model in future work.

3.2.2 Mathematical Formulation

Givene, f and a candidate alignmenta, which represents both the links between source and target head
words and the head word connections of the non-head words, wewould like to calculateP (f, a|e). The
formula for this is:

P (f, a|e) =[

l
∏

i=1

g(χi|ei)]

[

l
∏

i=1

δ(χi,−1)w−1(µi − i|classe(ei))]

[

l
∏

i=1

δ(χi, 1)t1(τi1|ei)]

[
l

∏

i=1

δ(χi, 1)s(ψi|ei, γi)]

[s0(ψ0|
l

∑

i=1

ψi)]

[

ψ0
∏

k=1

t0(τ0k)]

[
l

∏

i=1

ψi
∏

k=2

t>1(τik|ei, classh(τi1))]

[

l
∏

i=1

ψi
∏

k=1

Dik(πik)]

where:
δ(i, i′) is the Kronecker delta function which is equal to 1 ifi = i′ and 0 otherwise.
ρi is the position of the closest English head word to the left ofthe word ati or 0 if there is no such

word.
classe(ei) is the word class of the English word at positioni, classf (fj) is the word class of the

French word at positionj, classh(fj) is the word class of the French head word at positionj.
p0 andp1 are parameters describing the probability of not generating and of generating a single target

spurious word from each non-spurious target word,p0 + p1 = 1.
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m′ =
l

∑

i=1

ψi (3.4)

s0(ψ0|m
′) =

(

m′

ψ0

)

pm
′−ψ0

0 pψ0

1 (3.5)

Dik(j) =































d1(j − cρi
|classe(eρi

), classf (τik))
if k = 1

d2(j − πi1|classf (τik))
if k = 2

d>2(j − πik−1|classf (τik))
if k > 2

(3.6)

γi = min(2,

l
∑

i′=1

δ(µi′ , i)) (3.7)

ci =

{

ceiling(
∑ψi

k=1 πik/ψi) if ψi 6= 0
0 if ψi = 0

(3.8)

3.2.3 Other Alignment Structures are Special Cases

The alignment structure used in many other approaches can bemodeled using special cases of this frame-
work. We can express the 1-to-N structure of models like Model 4 by disallowingχi = −1. For 1-to-1
structure we both disallowχi = −1 and deterministically setψi = χi. We can also specialize our gen-
erative story to the consecutive word M-to-N alignments used in “phrase-based” models, though in this
case the conditioning of the generation decisions would be quite different. This involves adding checks
on source and target connection geometry to the generative story. These checks would check whether the
phrase-based constraint is violated. If it is violated, “failure” would be returned. Naturally this would be
at the cost of additional deficiency.

3.2.4 Symmetricity

The LEAF generative story is symmetric, and so the same alignment structure can be used to evaluate the
model in the French to English, or in the English to French direction. In practice, we will estimate the
model in both directions, and in unsupervised training we will maximize likelihood in both directions.
When determining the Viterbi alignment, we sum the log costs of the model in both directions. We
discuss unsupervised training in the next section.

3.3 Unsupervised Training

3.3.1 Training LEAF Using Expectation-Maximization

3.3.1.1 Introduction

In this section we present the training of LEAF using the Expectation-Maximization algorithm. Expectation-
Maximization (Dempster et al., 1977), or EM, is an algorithmfor finding parameter settings of a model
which maximize the expected likelihood of the observed and the unobserved data (this is called the
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complete data likelihood; the incomplete data likelihood is the likelihood of only the observed data).
Intuitively, in statistical word alignment, the E-step corresponds to calculating the probability of all
alignments according to the current model estimate, while the M-step is the creation of a new model
estimate given a probability distribution over alignments(which was calculated in the E-step).

3.3.1.2 E-step

In the E-step we would ideally like to enumerate all possiblealignments and label them withP (f, a|e).
However, this is not possible when using a word alignment model as complex as LEAF. As we will see
below in the discussion of the M-step, we would at least like to find the most likely alignment of a paire
andf given the model. This is the Viterbi alignment,â in this formula:

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (3.9)

This is a repeat of equation 3.3 which represents the task of finding an approximate Viterbi alignment
to output as the final alignment output from the alignment process. Here, in Equation 3.9 we are referring
to the search for an alignment during training. We can vary this to be, for instance, the search for the
10 most probable alignments (where a posterior distribution over the 10 alignments would be used for
updating the model in the M-step).

Unfortunately, there is no known polynomial time algorithmfor finding the Viterbi alignment of
LEAF, or even for determining that a particular alignment isthe Viterbi alignment. We assume that this
is intractable. A similar problem (the calculation of the Viterbi alignment for IBM Model 4) was proven
to be NP-hard by Udupa and Maji (2006). So we take the most probable alignment we can find, and
assume it is the Viterbi alignment. The algorithms used to solve this search problem are discussed in
Section 3.4.

3.3.1.3 M-step

For the M-step, we would like to take a sum over all possible alignments for each sentence pair, weighted
byP (a|e, f) which we calculated in the E-step (note that the alignments labeled with probabilities in the
E-step must be renormalized to sum to 1 for eache, f pair, as they are estimates ofP (f, a|e), and we
would like estimates ofP (a|e, f)). As we mentioned, this is not tractable.

We make the assumption that the Viterbi alignment can be usedto update our estimate in the M-step
(which we callpM (a|e, f), the probability of the alignment given the sentencee and the sentencef ):

pM (a|e, f) =

{

1 if a = â
0 if a 6= â

(3.10)

Note that we are abusing the term “Viterbi alignment” to meanthe best alignment according to the
model that we can find, not the best alignment according to themodel that exists.

Although in our experiments we use Viterbi training, neighborhood estimation (Al-Onaizan et al.,
1999; Och & Ney, 2003) , “pegging” (Brown et al., 1993) or someother means of creating a set of
candidate alignments (whose probabilities are then normalized to sum to one) could be used instead in
the M-step.

We estimate new parameters from the Viterbi alignments found during the E-step by simply counting
events in the Viterbi alignments, since they are assumed in equation 3.10 to be the only alignments of
non-zero probability. We are interested in the counts in Table 3.1 which we simply count ina. After
collecting the counts, for each condition, we normalize these counts so that the conditional probabilities
sum to one, which provides us with the model estimate which isthe result of the M-step.
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cg(χi|ei) source word type
cµ(△i|classe(ei)) head word links (collected ifχi = −1)
ct1(fj |ei) head word translation
cs(ψi|ei, γi) number of words in target cept
cs0(ψ0|

∑

i ψi) number of unaligned target words
ct0(fj) identity of unaligned target words
ct>1

(fj |ei, classh(τi1)) non-head word translation
cd1(△j|classe(eρ), classf (fj)) movement of target head words
cd2(△j|classf (fj)) movement of left-most target non-head word
cd>2

(△j|classf (fj)) movement of subsequent target non-head words
(same counts, other direction) ...

Table 3.1: Counts used in unsupervised training of LEAF

The Viterbi training approximation is related to EM training, which tries to maximize the complete
data log likelihood. Neal and Hinton (1998) analyze approximate EM training and motivate this general
variant. In future work we would like to try using a probability estimate over a larger set of hypothesized
alignments to reestimate the model, but finding a set to use which helps performance of the estimated
models is an open research problem.

3.3.2 Bootstrapping

The term “bootstrapping” refers to how we initialize the model. In order to perform unsupervised training
of our new model we require an initial probability distribution over alignments. In practice, instantiations
of the EM algorithm (including approximate variants) startwith a pseudo-M step, where we estimate an
initial “iteration 0” model estimate, before the first full iteration of EM. For example, the IBM Models
(Brown et al., 1993) were originally specified as a sequence of increasingly complex models which boot-
strap from one another in this fashion. The iteration 0 estimate is calculated using the counts necessary
for our current model. However, these counts are collected over the alignment distribution (the set of
alignments and their probabilities) estimated using the previous model in the bootstrapping chain. In our
work, we use Model 1 to start with, bootstrap the HMM Model (Vogel et al., 1996) from Model 1, and
then bootstrap LEAF from the HMM Model.

To initialize the parameters of the generative model for thefirst iteration, we use bootstrapping from a
1-to-N and a M-to-1 alignment. We use the intersection of the1-to-N and M-to-1 alignments to provide
likely candidates for the head word relationship, the 1-to-N alignment to delineate likely target word
cepts, and the M-to-1 alignment to delineate likely source word cepts.

A key concept in our bootstrapping algorithms is whether an initial alignment is feasible under the
new model or not. Feasible means that we could set the parameter settings for the model such that
this alignment will have probability greater than zero under the model. Infeasible means that no such
parameter settings exist.

A problem arises when we encounter infeasible alignment structure where, for instance, a source
word generates target words but no link between the target words and the source word appears in the
intersection, so it is not clear which target word is the target head word. To address this, we consider
each of the N generated target words as the target head word inturn and assign this configuration 1/N of
the counts.
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3.4 Search

For each iteration of training we search for the Viterbi alignment for millions of sentence pairs. Evidence
that inference over the space of all possible alignments is intractable has been presented, for a similar
problem, by Udupa and Maji (2006). Left-to-right hypothesis extension using a beam decoder (as is
typically implemented in phrase-based SMT decoders) is unlikely to be effective because in word align-
ment reordering can not be limited to a small local window andso the necessary beam would be very
large. We are not aware of admissible or inadmissible searchheuristics which have been shown to be
effective when used in conjunction with a search algorithm similar to A* search for a model predicting
over a structure like ours. Therefore we use a simple local search algorithm which operates on complete
hypotheses.

Brown et al. (1993) defined two local search operations for their 1-to-N alignment models 3, 4 and
5. All alignments which are reachable via these operations from the starting alignment are considered.
One operation is to change the generation decision for a French word to a different English word (move),
and the other is to swap the generation decision for two French words (swap). All possible operations
are tried and the best is chosen. This is repeated. The searchis terminated when no operation results in
an improvement. Och and Ney (2003) discussed efficient implementation.

In our model, because the alignment structure is richer, we define the following operations:

• move French non-head word to new head

• move English non-head word to new head

• swap heads of two French non-head words

• swap heads of two English non-head words

• swap English head word links of two French head words

• link English word to French word making new head words

• unlink English and French head words

These operations are defined and discussed further in the next section. Germann et al. (2004) and
Marcu and Wong (2002) introduce some similar operations without the head word distinction.

3.4.1 Implementing the Search Operations

We now define the seven operations which transform an alignment a to an alignmenta′. For each
operation we begin by copyinga toa′ and then apply the operation ona′ as specified. The four operations
which are applied to non-head words are in Figure 3.2 and the three operations applied to head word links
are in Figures 3.3 and 3.4. Note that the operations applied to non-head words are similar to the word
level operations in Model 4. The operations applied to head-word links are like the operations in phrase-
based alignment such as those defined by Marcu and Wong (2002).

In implementing the search algorithm, we represent an alignmenta as a vectorµ, a vectorb and a
vectorh. bj is used to indicate the target head word for the target word atpositionj, just asµi indicates
the source head word for the source word at positioni. hj indicates which source head word at position
i generated the target head word at positionj. hj = 0 if the word at positionj is not a head word. If the
source word at positioni is deleted we setµi = 0. Likewise, if the target word at positionj is spurious,
we setbj = 0. We also define the function inv(i) which returns the positionj for whichhj = i or returns
0 if there is no such position.
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OPERATION 1: move French non–head word
Given: target word positionsj, j′

if bj 6= j andbj′ = j′ then
let bj = j′

end if

OPERATION 2: move English non–head word
Given: source word positionsi, i′

if µi 6= i andµi′ = i′ then
let µi = i′

end if

OPERATION 3: swap French head word decisions of two French non–head words
Given: target word positionsj, j′

if bj 6= j andbj′ 6= j′ then
swapbj andbj′

end if

OPERATION 4: swap English head word decisions of two Englishnon–head words
Given: source word positionsi, i′

if µi 6= i andµi′ 6= i′ then
swapµi andµi′

end if

Figure 3.2: LEAF search operations: move and swap non-head words

For comparison we note that for 1-to-N models an alignmenta is often represented as a vectorv
wherevj indicates the position of the source word which generated the target word at positionj, and
vj = 0 if the target word is spuriously generated.

We try all possible values of the parameters (see the line “Given” in each operation). Note that
“unlink source and target head words”, Operation 7 in Figure3.4, has 3 parameters, rather than 2. To
control complexity we restrict the total number of modified alignments considered reachable from an
alignmenta by applying this operation. This is done by placing restrictions on the parametersi and
j, which specify the location of the head-words with which to associate the former head words (and
non-head words previously associated with these former head words). We only allow for association
with nearby head words, or for changing the type of affected source words to “deleted” source word, or
affected target words to “spurious” target word.

3.4.2 Search Algorithms

Any search algorithm trying to find the Viterbi alignment according to the LEAF model is trying to solve
a problem which is most likely intractable. We must align as many as 10,000,000 sentence pairs for a
single iteration of training (given the data sets we have at the present time).
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OPERATION 5: swap English head word links of two French head words
Given: target word positionsj, j′

if bj = j andbj′ = j′ then
swaphj andhj′

end if

OPERATION 6: link English word to French word
{after this operation is performed, source wordi and target wordj are both head words}
Given: source word positioni, target word positionj
let j′ = inv(i), let i′ = hj
if i′ 6= 0 then

for i′′ = 1..l do
if µi′′ = i′ then

let µi′′ = i
end if

end for
end if
if j′ 6= 0 then

for j′′ = 1..m do
if bj′′ = j′ then

let bj′′ = j
end if

end for
end if
let hj = i

Figure 3.3: LEAF search operations: swap and link head words

To control memory usage, which would be a problem with any search algorithm, we have developed
a technique where we restrict the memory used to the parameters we need for a small number of parallel
sentences at a cost of refiltering the parameters each time weload a small group of parallel sentences to
align.

Because of the time tractability issues, we use a hillclimbing local search. Local search does have
one advantage over search algorithms which rely on hypothesis extension, which is that we are always
operating on a complete hypothesis. This makes integrationof new knowledge sources easier, and in
particular allows for knowledge sources which can only be scored over a complete hypothesis, which
would be difficult to use if our search involved partial hypothesis extension.

3.4.2.1 Basic Search Algorithm

In the basic search algorithm, we start the search from a starting alignment (for which we use the best
alignment from the previous iteration) and exhaustively try each of the operations in Figures 3.2, 3.3 and
3.4 with all possible values for the parameters. We rememberwhich resulting hypothesis was the best,
to use as the starting point in the next iteration of search. We terminate the search when no improvement
in model score via the search operations in Figures 3.2, 3.3 and 3.4 is possible.
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OPERATION 7: unlink the link between an English head word anda French head word
{non-head words whose head words are Frenchj′ or Englishhj′ would be “orphaned”}
{parameteri is the English head word (or NULL) to which to attach the English head-word athj′ and
any non-head words attached tohj′}
{parameterj is the French head word (or NULL) to which to attach the Frenchhead-word atj′ and
any non-head words attached toj′)}
Given: target word positionj′, source word positioni, target word positionj
let i′ = hj′

if i′ 6= 0 andµi = i andbj = j then
let µi′ = i andbj′ = j andhj′ = 0
for i′′ = 1..l do

if µi′′ = i′ then
let µi′′ = i

end if
end for
for j′′ = 1..m do

if bj′′ = j′ then
let bj′′ = j

end if
end for

end if

Figure 3.4: LEAF search operation: unlink head words

3.4.2.2 New Alignment Search Algorithm

We developed a new alignment algorithm to reduce the numerous search errors1 made by the basic search
algorithm and directly control the time taken:

• The alignment search operates by considering complete hypotheses so it is an “anytime” algo-
rithm (meaning that it always has a current best guess). Timers can therefore be used to control
processing, and we set these based on the product of the source and target sentence lengths.

• Alignments which are selected as the starting point at any iteration during a single run of the search
algorithm are marked so that they can not be returned to at a future point in the same search run.

• We perform a hillclimbing search (as in the baseline algorithm) but as we search we construct a
priority queue of possible other candidate alignments to consider (i.e. the second, third, etc best
alignments seen). The search is restarted by drawing the best candidate from this queue after a
timer expires. When calculating Viterbi alignments for the entire training corpus we have found it
effective to set such a timer 5 or more times, increasing the time limit each time.

The first improvement is important for restricting total time used when producing alignments for
large training corpora. The latter two improvements are related to the well-known Tabu local search
algorithm (Glover, 1986).

1A search error in a word aligner is a failure to find the best alignment according to the model, i.e. in
our case a failure to maximize Equation 3.3.
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SYSTEM KNOWN SEARCH ERRORS%
ARABIC/ENGLISH OLD 19.4
ARABIC/ENGLISH NEW 8.5
FRENCH/ENGLISH OLD 32.5
FRENCH/ENGLISH NEW 13.7

Table 3.2: Comparison of New Search Algorithm with Old Search Algorithm for Model 4 Alignment

3.4.2.3 Comparing the Two Search Algorithms

One issue of major importance in using local search is the careful control of search errors. A search error
is a failure to find the Viterbi alignment under the current model estimate and in a basic hillclimbing
search it means that the search ended in a local probability maxima2.

We present an experiment comparing our two search algorithms for the Model 4 search task. We
apply it a French/English task and to an Arabic/English task. The directions evaluated are the French
to English and Arabic to English generational directions. We apply both algorithms using the Model 4
search operations described in Appendix A. For each corpus we sampled 1000 sentence pairs randomly,
with no sentence length restriction. Model 4 parameters areestimated from the final HMM Viterbi
alignment of these sentence pairs. We then search to try to find the Model 4 Viterbi alignment with both
the new and old algorithms, allowing them both to process forthe same amount of time.

Our experiment evaluates the number of search errors made using the baseline search algorithm and
the new search algorithm. The percentage of known search errors is the percentage of sentences from our
sample in which we were able to find a more probable candidate by applying our new algorithm using
24 hours of computation for just the 1000 sample sentences. Table 3.2 presents the results, showing that
our new algorithm reduced known search errors to8.5% for Arabic to English and13.7% for French to
English. This shows that the new algorithm is more effectivethan the baseline search algorithm.

3.5 Experiments

3.5.1 Data Sets

We perform experiments on two large alignments tasks, for Arabic/English and French/English data sets.
Statistics for these sets are shown in Table 3.3. All of the data used is available from the Linguistic Data
Consortium except for the French/English gold standard alignments which we annotated ourselves (and
are available from us).

3.5.2 Experimental Results

To build both our baseline and the contrastive alignment systems, we start with 5 iterations of Model 1
followed by 4 iterations of HMM (Vogel et al., 1996), as implemented in GIZA++ (Och & Ney, 2003).

For the LEAF word classes, we use the same set of classes as thebaseline system. 50 classes are
used for each language. The classes are determined using the“mkcls” program which is supplied with

2A search error could also mean that we had an error in the implementation of our search algorithm,
but we are confident that over the course of experimentation we have effectively removed such errors.
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ARABIC/ENGLISH FRENCH/ENGLISH

A E F E

TRAINING

SENTS 6,609,162 2,842,184
WORDS 147,165,003 168,301,299 75,794,254 67,366,819
VOCAB 642,518 352,357 149,568 114,907

SINGLETONS 256,778 158,544 60,651 47,765

ALIGN DISCR.
SENTS 1,000 110

WORDS 26,882 37,635 1,888 1,726
L INKS 39,931 2,292

ALIGN TEST

SENTS 83 110
WORDS 1,510 2,030 1,899 1,716

L INKS 2,131 2,176

TRANS. DEV
SENTS 728 (4REFERENCES) 833 (1REFERENCE)

WORDS 18,255 22.0KTO 24.6K 20,562 17,454

TRANS. TEST
SENTS 1,056 (4REFERENCES) 2,380 (1REFERENCE)

WORDS 28,505 35.8KTO 38.1K 58,990 49,182

Table 3.3: Data sets

GIZA++. This program starts with a random assignment of the words in a monolingual text to the 50
monolingual classes and then greedily maximizes the likelihood of the monolingual text according to
a class-based bigram model by moving words to different classes as described by Och (1999). In our
experiments the classes used for the head classes, classesh, are the same as those used for all French
words, classesf .

For non-LEAF systems, we take the best performing of the “Union”, “Refined” and “Intersection”
symmetrization heuristics (Och & Ney, 2003) to combine the 1-to-N and M-to-1 directions resulting in
a M-to-N alignment. Because these systems do not output fully linked alignments, we fully link the
resulting alignments. The reader should recall that this does not change the set of rules or phrases that
can be extracted using the alignment.

We compare the unsupervised LEAF system with GIZA++ Model 4 to give some idea of the per-
formance of the unsupervised model. We made an effort to optimize the free parameters of GIZA++,
while for unsupervised LEAF there are no free parameters to optimize. A single iteration of unsuper-
vised LEAF is compared with heuristic symmetrization of GIZA++’s extension of Model 4 (which was
run for four iterations). LEAF was bootstrapped as described in Section 3.3.2 from the HMM Viterbi
alignments. Note that the timings for the first E-Step of the French/English experiments are presented in
Appendix C.1. The current (unoptimized) LEAF search implementation is slow; speeding up search is
discussed in the same appendix.

Results for the experiments on the French/English data set are shown in Table 3.4. We ran GIZA++
for four iterations of Model 4 and used the “Refined” heuristic (line 1). We observe that LEAF unsuper-
vised (line 2) is competitive with GIZA++ (line 1).

Results for the Arabic/English data set are also shown in Table 3.4. We used a large gold standard
word alignment set available from the LDC. We ran GIZA++ for four iterations of Model 4 and used
the “Union” heuristic. We compare GIZA++ (line 1) with one iteration of the unsupervised LEAF
model (line 2). The unsupervised LEAF system is worse than four iterations of GIZA++ Model 4. We
believe that the features in LEAF are too high dimensional touse for the Arabic/English task (which is
more difficult than the French/English task) without the back-offs available in the semi-supervised model
which we will discuss in Chapter 4.
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FRENCH/ENGLISH ARABIC/ENGLISH

SYSTEM F-MEASURE (α = 0.4) F-MEASURE (α = 0.1)
GIZA++ 73.5 75.8
LEAF UNSUPERVISED 74.5 72.3

Table 3.4: Experimental Results

We will return to these experiments in Chapter 4 to compare the performance of our unsupervised
systems with the semi-supervised systems presented there.In particular, we will present a discriminative
model based on sub-models directly derived from the LEAF generative story which we will train using
a semi-supervised training algorithm.

3.6 Previous Work

The LEAF model is inspired by the literature on generative modeling for statistical word alignment and
particularly by IBM Model 4 (Brown et al., 1993). Because of this, we begin our discussion of previous
work in generative modeling with the most widely used alignment structure, the 1-to-N structure, which
is that used by the IBM Models and the HMM word alignment model. We then continue with other
structures, discuss additional issues and conclude.

3.6.1 Generative Models of 1-to-N Structure

The 1-to-N structure is not the best alignment structure. See the discussion in Section 1.2.4 and partic-
ularly Table 1.6 on Page 5 for an analysis of two example parallel sentences which shows that there are
interesting minimal translational correspondences whichcan not be modeled using this structure.

Most 1-to-N models have the advantage that their parameterscan be robustly estimated from rel-
atively small amounts of data. While such models can not directly account for M-to-N discontinuous
correspondence, they can use word deletion, where a source word generates nothing (sometimes referred
to as “zero fertility” for reasons which will become apparent in the discussion), to try to reduce the effect
of this by allowing all of the source words which should appear in a M-to-N relationship to be deleted
except for one source word which generates the N target words3. Often models with this structure do
a good job of accounting for the cepts in the target language,by robustly decomposing the probabili-
ties associated with these cepts into word level probabilities, and in practice these models can even deal
with discontinuous target cepts well. Given decisions about target cepts taken from a 1-to-N alignment,
and source cepts taken from a N-to-1 alignment, heuristics can be applied which attempt to generate a
M-to-N discontinuous alignment of reasonable quality.

In practice, the main disadvantage of this alignment structure is the need for heuristic symmetrization
in order to obtain M-to-N discontinuous alignments. Heuristic symmetrization was introduced by Och
and Ney (2003) and extended by Koehn et al. (2003). The choiceof symmetrization heuristic which is
most effective changes from task to task. It is not only dependent on the language pair being aligned, as

3However, In general many variants approximating an M-to-N minimal translational correspondence
will be possible. For instance if M=N such a model will often align the words 1-to-1. But it is important
to remember that none of these variants is correct and it is easy to find contexts where the translation
rules licensed by such variants would be harmful.
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well as the translation direction of the final translation task, but it is also dependent on the training data
size (for instance, see the graphs in Chapter 2 on page 17). Appendix A contains further information
on heuristic symmetrization, including specific details ofhow it is used in our baseline. LEAF does not
require use of these heuristics.

We now discuss specific 1-to-N alignment models, beginning with the IBM models.

3.6.1.1 The IBM Models

Brown et al. (1993) developed five statistical models of translation, IBM Models 1 through 5, and
parameter estimation techniques for them. These models alluse the 1-to-N alignment structure. The
models were designed to be used in a pipeline, where each model is bootstrapped from the previous
model.

Model 1 is the first model in the pipeline. It makes very strongconditional independence assumptions
on word placement and generation (all French words are generated and placed independently). Three
probability distributions are involved in generating a French sentence from a English sentence using
steps which define an alignment. These are a distribution over the length of the French sentence, a
distribution over the alignment decision for each French word position (denoting the position of the
English word which generated it), and a distribution over the translation decision (which stochastically
selects the lexical identity of the French word given the English word which generated it).

The formula in Model 1 for the joint probability of an alignment and a French string, given an
English string, is in Equation 3.11. Note the three components of the model. The length distribution
is the numerator of the term before the product. The alignment position model is simply1/(l + 1)m, a
uniform distribution over the English positions (including position0 which if selected would indicate that
the French word is spuriously generated). The translation model is inside the product so it is evaluated
once for each of them French words.

P (f, a|e) =
p(m|l)

(l + 1)m

m
∏

j=1

p(fj |eaj
) (3.11)

When Model 1 is trained to maximize likelihood using EM the likelihood is convex, but in practice
Och and Ney (2003) suggest that stopping before convergenceincreases performance. The estimation of
the parameters for a single iteration can solved without a complex search operation, and the calculation
of the Viterbi alignment for a fixede andf is trivial (the highest generation probability for each French
word is selected). This makes Model 1 a popular choice for applications which do not require a strong
model of translational correspondence but instead a rough indication of whether two sentences should
be considered parallel, such as sentence alignment (Moore,2002). Model 1 is also used as a smoothing
method for higher order translation models (Och et al., 2004).

Model 2 relaxes one of the assumptions of Model 1, by making the location of the English word
which generated each French word dependent on the absolute locations of the two words. The equation
for Model 2 is in Equation 3.12. The first term is again the length distribution. Within the product, the
first term is the alignment position model (the conditional probability that the French word at positionj
is generated by the English word at positionaj). The translation model is identical with Model 1. Like
Model 1, the estimation of the parameters for a single iteration can solved without a complex search
operation, and the calculation of the Viterbi alignment is also simple (the product of the alignment
position model and the translation model is simply maximized for each French word in turn).

P (f, a|e) = p(m|l)

m
∏

j=1

p(aj |j, l,m)p(fj |eaj
) (3.12)
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Models 1 and 2 are both weak models of translational correspondence which were designed to be
used for bootstrapping Models 3, 4 and 5. The advantage of these models is the tractability of both
estimating the models and making predictions using the models.

Models 3, 4 and 5 are considerably more complex. These modelsare discussed in detail in Appendix
A. They are referred to as the “fertility” models. An Englishword’s fertility is the number of French
words generated by it. The use of a fertility model requires inverting the alignment position model.
Models 3 and 4 use a simple alignment position model which introduces deficiency into the estimation.
Deficiency means that the model wastes probability mass on predictions which are impossible. In this
case the deficiency lies in the placement decisions for French words (an example is that the probability
that two French words are placed in the same position can be non-zero). Och and Ney (2003) presented
evidence that this form of deficiency is not a problem in practice.

Model 3 introduces the “fertility” distribution. The alignment model still uses absolute positions as
in IBM Model 2, but is inverted so that we calculate the probability of placing a French word given an
English word’s position (rather than vice versa, as was the case for Model 2). Model 3 is not generally
used in practice. The reader interested in Model 3 is referred to the Model 3 tutorial (Knight, 1999),
which is also good background for understanding Model 4 (as well as providing a good first view of
statistical word alignment and SMT in general).

The good performance of Model 4 is the basis for the work on modeling in this thesis, and Model 4
is used in much of the work in Statistical Machine Translation published in the last several years. Model
4 is a generalization of Model 3 where the alignment model uses relative positions rather than absolute
positions. The alignment model is again inverted from that used by Model 1 and Model 2. The reader is
referred to Appendix A for a full presentation of Model 4 including a discussion of the generative story
with examples. LEAF suffers from the same deficiency as Model4 and introduces additional deficiency
in the source non-head word linking decisions, but we have seen no evidence that this causes problems
in practice.

Model 5 is the last model in the chain of IBM models. Model 5 is similar to Model 4, except that
Model 5 is not deficient. Model 5 is not typically used becauseavoiding the deficiency of Model 4
requires a much larger number of parameters than Model 4 has,and because Model 5 has not been
shown to perform better than Model 4, despite Model 4’s deficiency (Och & Ney, 2003).

The advantages of Model 4 over Model 1 and Model 2 come from themore powerful model which
better captures translational correspondence, but this comes at a high price. Both estimation and search
over the full distribution of alignments becomes intractable. In practice, a local hillclimbing search is
used during the E-step (as discussed for Model 4 in Appendix A.2.5.2, note that this is similar to the
“basic” search algorithm used with LEAF discussed in Section 3.4), to find a small set of probable
alignments, and the model is re-estimated using only this set (i.e. with the assumption that alignments
outside this set have probability0). LEAF also requires local hillclimbing search and re-estimation from
a small set of probable alignments.

The unsupervised baseline in this thesis involves first training Model 1, then training the HMM word
alignment model (the HMM has similarities to Model 2 but performs better than Model 2; it is described
in the next section), and then Model 4. Appendix A includes a presentation of the baseline unsupervised
system which uses the GIZA++ implementation of Model 4 in both directions (the 1-to-N direction
and the M-to-1 direction), followed by the application of symmetrization heuristics to produce the final
M-to-N discontinuous alignment.

LEAF improves on Model 4 by providing a generative story which allows the modeling of M-to-N
discontinuous alignment structure rather than the 1-to-N structure modeled by the IBM Models. This is
a better structure of translational correspondence than that modeled in the IBM models. In practice, this
means that LEAF has the important advantage that it does not require heuristic symmetrization and is able
to model the full range of translational correspondences weare interested in directly. LEAF can provide
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a posterior distribution over likely M-to-N discontinuousalignment hypotheses, which is impossible
to obtain from Model 4 without using both symmetrization heuristics and heuristic combination of the
1-to-N and M-to-1 posterior probabilities.

3.6.1.2 HMM Word Alignment Models

Much of the additional work on generative modeling of 1-to-Nword alignments is based on the HMM
word alignment model (Vogel et al., 1996), which is itself a generalization of ideas presented by Dagan
et al. (1993). The HMM word alignment model uses an alignmentmodel which has relative positions,
like IBM Model 4, rather than using an alignment model involving absolute positions which are used
with models like IBM Model 2. We observe the French words, which are the emissions of the HMM,
and we know that there arel states, the English words. The transition parameters are tied by distance.
For example, suppose we already emitted the French word at position j from statei. The transition
probability of transitioning from statei to i′ (which would mean that we would emit the French word at
positionj + 1 from i′) is conditioned on the signed distancei′ − i.

Many research groups are interested in the HMM because it canbe efficiently trained using the
Forward-Backward algorithm, and inference is also tractable. One important difference with Model 4
is that the HMM does not have a fertility distribution. The fertility distribution is important to the good
performance of Model 4, and there have been several attemptsto at least partially overcome the lack of
a fertility distribution in the HMM (without losing the benefits of tractable inference) as we will discuss
further below.

Och and Ney (2003) presented extensions to the HMM word alignment model which allow NULL
(which emits spurious target words) to be modeled usingl additional states (recall thatl is the length of
the English sentence). The choice of this state encodes the positioni of the previous non-NULL English
word (the state from which we transitioned into a NULL state). This allows the appropriate NULL state
to “remember” the previous non-NULL English word, so that transition probabilities out of the NULL
states can be based on the previous English word. If this werenot done, and we have only one NULL
state, this state would “forget” where in the English sentence the last non-spurious word was emitted
from. This formulation adds one additional free parameter,the probability of a jump to the appropriate
spurious word state (in fact, the formulation requiresl free parameters, but in practice these are tied).
An additional free parameter is used to control an interpolation of the relative position alignment model
with a uniform position alignment model, which is used to smooth the relative position alignment model.
These two parameters must be optimized on held out data. In practice, we have found the parameter
controlling the jump to the NULL states to be particularly important for good performance. Och and
Ney (2003) also proposed lexicalizing the non-NULL jump probabilities with word classes to create a
class-based HMM.

Toutanova et al. (2002) and Lopez and Resnik (2005) presented a variety of refinements of the HMM
word alignment model particularly effective for low data conditions. Toutanova et al. (2002) reported
on extending the HMM word alignment model in three ways: using POS-based translation probabilities,
making the jump to NULL dependent on the identity of the English word and conditioning the generation
of spurious French words on the following French word. Lopezand Resnik (2005) introduced syntac-
tically motivated jump distance features based on the distance within a dependency parse and improved
initialization of both the translation and alignment position models.

The model which was presented by Deng and Byrne (2005) is an extension of the HMM which
modifies the HMM to be able to emit a phrase of words at each state (recall that a state is an English
word). Optionally, a word-level bigram formulation can be used to model which words are in a phrase,
otherwise a word-level unigram model is used. A free parameter is used to tune whether longer or shorter
phrases are desired. Like the extension of the HMM presentedby Och and Ney (2003), the state space is
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multiplied by two to model spurious target generation (though here we are referring to spurious phrases
rather than spurious words), and the probability of outputting a spurious phrase is a free parameter. To
more robustly model the alignment position distribution a linear interpolation of the usual HMM relative
position model is performed with an absolute position model(like Model 2’s alignment model) and
a simple uniform position model. This interpolation of these three quantities introduces another two
free parameters. These four free parameters must be optimized against held out data, which, given our
experience with the HMM, is likely to be important to performance. The structure modeled by Deng
and Byrne (2005) is 1-to-N. When trained in both training directions (using different settings for the free
parameters of the two directions), the improvements in the model were competitive with Model 4 (for
the special case of monotone translation). However, the largest improvements were obtained by using a
technique which “second guesses” the final symmetrized alignment, which is easier to do with models
which support exact inference (like the HMM) than with LEAF or Model 4. This “second guessing”
provides translations for phrases which were not covered bythe symmetrized alignment, we will discuss
this in detail in Section 3.6.7.

3.6.1.3 Discussion

Model 4 and the HMM share one important characteristic. The reordering models (also called “dis-
tortion” models) use relative positions, i.e. that there isa greater than zero order dependency on word
placement. The “homogeneous” HMM word alignment model has afirst order dependency (the position
of the next placed word is conditioned only on the position ofthe previously placed word). The extended
HMM word alignment model of Och and Ney (2003) remembers the location of the previously placed
non-NULL word. Model 4 conditions the alignment model on thelocation of the previous “cept center”
for the first word (from the left) generated from an English word, on the position of the previous word
generated from an English word if the word being placed is notthe first word generated, and also uses
word classes (see Appendix A for more details). These modelsappear to be successively more power-
ful. LEAF uses a similar ordering model to Model 4 with the important difference that the distortion is
relative to explicitly chosen head words4.

The lack of fertility in the HMM is a strong difference with Model 4. Toutanova argues for using a
probability of “staying” in a source word to try to indirectly model fertility. Deng and Byrne use phrase
length probabilities for each emission. Both of these can not directly model fertility because the state can
be returned to multiple times, but they may provide a useful bias which partially makes up for the lack of
an explicit fertility model. Model 4’s fertility model is its main strength over the HMM, as it provides a
more robust global model of generation (e.g. in order for an English word to generate words in two very
different parts of the sentence it pays both a distortion cost and a fertility cost; for the HMM this is just
a distortion cost which is easily offset by avoiding a low probability translation). LEAF has an explicit
model of fertility which is similar to Model 4’s but is also conditioned onγ which indicates whether the
source cept is a single word. We have experimented with conditioning this decision as well on the word
class of the target head word, but found that performance degraded, indicating that such a distribution
can not be robustly estimated with the amount of data we currently have available5.

In general, LEAF improves on the HMM by providing a generative story which allows the modeling
of M-to-N discontinuous alignment structure rather than the 1-to-N alignment structure modeled by
the HMM. As in the case of Model 4, the predictions of the HMM word alignment model are 1-to-N,
which requires heuristic symmetrization of predictions inboth training directions. However, an important

4The placement of the third and subsequent words in a cept is relative to the placement of the previous
word, which is more similar to the modeling of distortion in Model 4.

5One approach to remedying this might be to use fewer head wordclasses, we currently use 50.
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difference with both LEAF and Model 4 is that HMM word alignment models support tractable exact
estimation and prediction, which explains their interest to the research community. We bootstrap both
LEAF and our baseline Model 4 system from the HMM as implemented in GIZA++.

A disadvantage which both Model 4 and the HMM variants have incommon is the existence of
several free parameters which must be optimized on held out data in an expensive end-to-end heuristic
search which is either manually done, or often simply not done at all (in which case parameters optimized
for a different task are used). Unsupervised LEAF has the advantage that it requires no free parameters,
but this lack of direct control over important parameters contributes to poor performance if the bootstrap
distributions are not well estimated (this appears to be thecase for the unsupervised Arabic/English
experiment we reported in Section 3.5). In Chapter 4 we show how a small number of parameters can be
trained using as few as 100 sentences of annotated data as an integral part of a semi-supervised training
process. This can be viewed as a practical way to avoid the manual optimization process required when
using such free parameters while still obtaining the benefits of such an optimization.

3.6.1.4 Other Generative Models of 1-to-N Structure

Moore (2004) reported on modifications to the training of IBMModel 1, which serve to improve the
quality of the Viterbi alignment of Model 1. Moore noted thatusing techniques which may reduce the
accuracy of the full distribution over possible alignmentsin favor of strongly sharpening the Viterbi
estimate, may be counter productive if the model is subsequently used to bootstrap, as is done with both
LEAF and our baseline. However, Moore motivated his work by discussing applications other than word
alignment which use Model 1, including sentence alignment (Moore, 2002) in particular.

Och and Ney (2003) presented “Model 6”, which is a log-linearcombination of Model 4 and the
HMM. The motivation for this combination is that the distortion (reordering) model for the HMM is
in the inverse direction of that of Model 4, and so combining their predictions may be more robust. In
practice, Model 6 is not used to create alignments for state of the art SMT systems. Symmetric LEAF
calculates a relative distortion model in both directions,and uses a differently parameterized model for
determining source non-head word to head word links (again in both directions), so it captures this same
effect in a stronger fashion.

3.6.2 Generative Models of 1-to-1 Structure

Another popular choice has been to use the 1-to-1 alignment structure. The discussion in Section 1.2.4
and particularly Table 1.6 on Page 5 shows that this structure is inadequate in accounting for translational
correspondence. However, search over this type of structure is simple. Wu (1997) and Melamed (2000)
and Cherry and Lin (2003) all used this structure. It is possible that 1-to-1 alignment structure may be of
some interest for applications other than machine translation with a strong emphasis on precision, such
as the extraction of single word translation lexicons for use in Cross-Lingual Information Retrieval (Xu
et al., 2001), but further study is needed to determine whether this is in fact the case or whether the low
recall of 1-to-1 alignment approaches causes problems.

Wu (1997) invented hierarchical alignment, using operations on parallel binary trees, which were
modeled as hidden variables, and a word level lexicon to establish translational correspondence. This
allows for highly tractable estimation and inference, but has not been used effectively to improve trans-
lation.

Melamed (2000) introduced “competitive linking” which is aheuristically motivated combined mod-
eling/search approach which involves a greedy 1-to-1 matching of English and French words. Cherry
and Lin (2003) used a probabilistic model similar to Melamed(2000) and two constraints, the 1-to-1 con-
straint and the no crossing dependencies (“cohesion”) constraint. Two sets of features are used in their
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model, “adjacency” features (which rewards groups of wordsfor clustering together) and “dependency”
features (a word movement penalty based on dependency treesgenerated using the MiniPar dependency
parser). LEAF’s placement models encode knowledge similarto Cherry and Lin’s non-syntactic features
here, but the syntactic features may capture a generalization that is of interest in the semi-supervised
approach we present in Chapter 4.

Yamada and Knight (2001) presented a tree-to-string alignment model. The model is trained using
English syntactic trees generated from a high quality syntactic parser and Japanese strings. A particular
generative story applies operations to the English tree to generate the Japanese string, and this induces an
alignment. The operations on the tree allowed by the generative story include three kinds of operations,
the reordering of English constituents within an English constituent phrase, translation actions mapping
English to Japanese, and insertion of NULL words. This modelwas not used to try to generate a good
Viterbi alignment, but instead to directly learn a good estimate forp(fstring|etree) which is then applied
during translation (translation is the recovery of an English tree given a Japanese string), in conjunc-
tion with a language model which models the probability of anEnglish tree. This model uses a 1-to-1
structure for the majority of the translation actions, which are translations of the leaves of the English
parse tree, but was later extended to allow phrasal translations of constituents in the parse tree (however,
this was not implemented in the alignment model). Gildea (2003) extended this model to tree-to-tree
alignment and enhanced both tree-to-string and tree-to-tree generative stories with an operation called
“clone” which allows models to be more powerful and less tiedto the original tree structure (or struc-
tures). LEAF induces a roughly dependency-like relationship in the links between a single head word
and multiple non-head words, but this is more semantically motivated than syntactically motivated.

1-to-1 alignments make very few predictions, so they have a bias toward high precision but low
recall. Estimation (and prediction) using 1-to-1 alignment structure is highly tractable, but unfortunately
this structure is not a good choice for building MT systems. As we showed in Chapter 2, the AER metric
unfairly favors high precision alignments, which has encouraged research using this structure, but none
of this research has been shown to improve machine translation quality.

3.6.3 Generative Models of “Phrase-based” Structure

The phrase-based (consecutive word) alignment structure has also been used in several alignment models,
though it is more often used in translation models. The discussion in Section 1.2.4 and particularly Table
1.6 on Page 5 shows that the phrase-based assumption is also not a good choice of alignment structure,
and we mention again that even phrase-based SMT models do notperform ideally with alignments
generated using a phrase-based alignment structure.

3.6.3.1 General consecutive word alignment models

Marcu and Wong (2002) defined the Joint model, which modeled consecutive word M-to-N alignments.
When used as a translation model, the Joint model is interesting because it uses a distribution over phrase
translations directly, rather than estimating it from a Viterbi alignment. The model has a strong memo-
rization capability and seems to match the assumptions behind phrase-based SMT closely. However, this
memorization capability leads to problems in generalization and in tractability. In the Joint model, unlike
in LEAF, overlapping phrases do not share parameters. For instance, the probability of the French cept
“homme” translating to the English cept “man” is not directly related to the probability of the French
cept “homme” translating as the English cept “the man”. Thisleads to a large blow-up in the number
of parameters, causing the intractability problems, and leads to poor generalization. The Joint model
also does not have the ability to deal with non-parallelism (which is annotated using NULL alignments
in most other translation models). Kumar et al. (2006) used the phrase-based version of the alignment
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templates translation framework of Och and Ney (2004) to build an alignment model which is similar to
the Joint model.

The problem with the blow-up in parameter space involved in models like the Joint model is ad-
dressed in LEAF by using the head word structure to allow the phrase probabilities to decompose into
smaller units. In particular, this appears to provide a goodtrade-off between robustness and expres-
siveness given the amount of training data currently available. The M-to-N discontinuous alignment
structure using the head word assumption is also faster to search than a pure phrase-based structure as
the translation dependencies on one side are only dependenton the head word on the other side (andγ
which is a flag indicating whether the cept on the other side contains just one word). The decomposition
of costs using the head word assumption means that adding a non-head word to a head word is an op-
eration which incurs additional cost but does not cause all of the other costs incurred by that cept to be
reevaluated. In phrase-based models any change to a cept causes all costs to be reevaluated. LEAF also
provides us with a path to easily increase the power of the model by simply reducing reliance on word
classes and further relaxing conditional independence assumptions.

3.6.3.2 Other “phrasal” models

Other alignment structures have been tried which are loosely phrasal. Wang and Waibel (1998) intro-
duced a generative story based on extension of the generative story of Model 4. The alignment structure
modeled was “consecutive M to non-consecutive N”, and the parameters were trained using EM. LEAF
has some similarities with this model in that they are both based on generative stories which are exten-
sions of Model 4. However, LEAF allows the full range of M-to-N discontiguous alignments.

Tiedemann (2003) created an algorithm similar to Melamed’scompetitive linking algorithm, but al-
lowing adjacent word connections. This structure has similarities to the “Refined” heuristic symmetriza-
tion metric of Och and Ney (2003) which we discussed in Chapter 2. A variety of features were used
including features based on POS tags and similarity heuristics. We will propose a semi-supervised train-
ing algorithm which could use these types of features in Chapter 4.

3.6.4 Generative Models of 1-to-N and M-to-1 Structure

Matusov et al. (2004) presented a model capable of modeling 1-to-N and M-to-1 alignments (but not
M-to-N alignments) which was bootstrapped from Model 4. Thetechnique used for bootstrapping is
to use state occupation probabilities. State occupation probabilities can be exactly determined for the
HMM but only approximately determined for Model 4; this involves using a sample of the Model 4
posterior distribution which is calculated over a small setof alignments which are hopefully near to
the best alignment. We suspect that this is not more powerfulthan simply estimating a model directly
from the Model 4 Viterbi alignment (and could even be inferior), but these two options have never been
directly compared. The state occupation probabilities arethen used in combination with the Hungarian
algorithm to solve a bipartite covering problem which derives a 1-to-N and M-to-1 alignment. However
the decisions made are based only on the state occupation probabilities which don’t model the global
context well6. Because of this, we doubt that using HMM or Model 4 state occupation probabilities
would be as effective as bootstrapping LEAF from the HMM.

6This is easiest to illustrate with an example. Suppose an estimate of Model 4 prefers to assign the
French word at the beginning of a particular French sentenceto the first English word 50% of the time
and the French word at the end of the French sentence to the same English word 50% of the time. This
can easily be captured in the state occupation probabilities. But this fails to capture any interaction
between these two alignment decisions. If the highly probable alignments which have the first French

43



3.6.5 Generative models of M-to-N Discontinuous Structure

LEAF is the only general purpose alignment model which models M-to-N discontinuous structure which
we are aware of. However, May and Knight (2007) defined a modelwhich can be used to re-align given
a high quality word alignment and an English parse tree. Thiswork uses the GHKM translation model
(Galley et al., 2006) as an alignment model.

May and Knight (2007) used this model to re-align from a starting alignment and a fixed parse tree.
The parse tree is treated as a fixed hard constraint. First an inventory of treelet/alignment pairs is created
from the starting alignment and the fixed parse tree. Then EM is used to find better treelet/alignment
pairs for maximizing the likelihood of the training data then were originally used (note that all of the
treelet/alignment pairs considered for a particular sentence must have been observed in the starting min-
imal Viterbi derivation of either the sentence in question or a different training sentence). Finally the
Viterbi treelet/alignment derivation is found for each sentence pair. This work allows a generative model
to take advantage of syntactic information. However, it hassome of the same issues with overlapping
rules as phrasal systems do. This is partially addressed by adding a “rule size” distribution which is
analogous to a fertility distribution (but is over rule sizerather than the number of words generated). We
would be interested in taking advantage of syntactic information in LEAF, but as the parse tree is not
perfect (it is generated by a probabilistic parser, which makes errors) we think the appropriate way to do
this would be to define syntactically motivated sub-models in our semi-supervised formulation, which
will be discussed in Chapter 4.

3.6.6 Symmetrization

One important aspect of LEAF is its symmetry. Och and Ney (2003) invented heuristic symmetrization
of the output of a 1-to-N model and a M-to-1 model resulting ina M-to-N alignment, this was extended
by Koehn et al. (2003). Zens et al. (2004) introduced symmetrized lexicon training. Liang et al. (2006)
showed how to train two HMM word alignment models, a 1-to-N model and a M-to-1 model, to agree
in predicting all of the links generated, resulting in a 1-to-1 alignment with occasional rare 1-to-N or
M-to-1 links. We have used insights from these works to help determine the structure of our generative
model.

Various models have attempted to gain the advantages of using these symmetrization heuristics, but
most have been required to deal with 1-best predictions (or with state occupation probabilities). LEAF
uses the head word structure in a symmetric fashion inside ofthe generative story, which seems to be a
better way to model the desired structure. In particular, this allows for a posterior distribution over more
than the 1-best alignment without the use of heuristics.

3.6.7 Different Rule/Phrase Extraction

The work reported in this thesis used translation systems which extract translation rules from a single
word alignment (Koehn et al., 2003). One promising area of translation modeling research is work
on extracting translations rules from richer representations than a single word alignment. The IBM
models (Brown et al., 1993) and the Joint model (Marcu & Wong,2002) were designed to estimate
parameters (for 1-to-N and phrase-based translation models respectively) directly without requiring the

word aligned to the first English word never contain an alignment of the last French word to the first
English word (because the distortion probabilities involved in making a placement at the beginning of
the French sentence and at the end of the French sentence of words generated from the same English
word are low), this interaction would be lost using state occupation probabilities.

44



use of a Viterbi alignment. Venugopal et al. (2003) inventeda generalized technique for using lower
order alignment models such as Model 1 to generate phrase pairs given a source language test set and an
unaligned bitext.

Deng and Byrne (2005) described an approach which is used as apost-process for finding translations
of phrases in a translation test set which did not have translation candidates indicated in the symmetrized
alignment. This is a form of “second guessing” the symmetrized alignment. It involves using a modified
Forward algorithm for estimating the posterior probability of each possible phrase pair (according to
symmetrically trained phrase-based HMM models). They usedthis approach together with symmetrized
phrase-based HMM alignments to obtain improved BLEU scoresover just using the symmetrized phrase-
based HMM alignments. They also obtained improved BLEU scores when using the posteriors calculated
over symmetric phrase-based HMM models to extract translations for phrases which were not covered
in symmetrized Model 4 alignments. The implementation of this approach requires the calculation of
quantities similar to the state occupation probabilities of Matusov et al. (2004). This relaxation of
the Viterbi alignment assumption for phrasal or hierarchical rule extraction seems to us to be a logical
extension of our current approach. Implementing this for LEAF would require modifications to the model
to allow it to generate the most probable alignment subject to the constraint that at least one translation
of a certain phrase can be extracted; we will discuss this further in Chapter 5.

3.6.8 Discussion

We have outlined some of the important previous work on word alignment. We chose to break this work
down by the alignment structure modeled, as our choice of a better alignment structure was critical to
the design of LEAF.

However, there are other dimensions on which we could expand. One very important dimension is the
treatment of syntactic phenomena. In designing LEAF, we were not only inspired by Model 4, but also
by dependency-based alignment models. We discussed some ofthe dependency-based word alignment
models in the sections on 1-to-1, phrase-based and M-to-N discontinuous structures. In contrast with
their approaches, we have a very flat, one-level notion of dependency, which is semantically motivated
and learned automatically from the parallel corpus. This idea of dependency has some similarity with
hierarchical SMT models such as the Hiero model (Chiang, 2005).

3.7 Summary

Our new generative model, LEAF, is able to model alignments which consist of M-to-N non-consecutive
minimal translational correspondences. We presented the generative story and mathematical formulation.

We then discussed the training of LEAF using an approximate Expectation-Maximization training
algorithm. We discussed the E-step, the M-step, and bootstrapping (performing the initial M-step).

We use a local search algorithm to search for likely alignments. We presented the permutation opera-
tors used and discussed how to use them in a basic hillclimbing algorithm. We also derived an improved
hillclimbing algorithm using “Tabu” alignments and restarts, and performed a simple experiment show-
ing that it is effective.

We conducted experiments on large French/English and Arabic/English data sets which show that
LEAF is comparable with our baseline, GIZA++, when LEAF is trained in an unsupervised fashion.

We then discussed the extensive body of previous work on generative modeling of word alignment.
We broke the discussion down by the alignment structure modeled, with the two most important struc-
tures being the “1-to-N” structure as used in the IBM models and the HMM, and the “phrase-based” (con-
secutive word) structure as used in phrase-based models. Wecontrasted LEAF’s M-to-N non-consecutive
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alignment structure with both of these structures and discussed the advantages of the head word assump-
tion, and in particular how this approach solves the phrasalsegmentation problem of phrase-based mod-
els, where overlapping phrases cause problems with both tractability and robustness. We also discussed
two other issues, symmetricity and approaches to building translation systems which use more than just
the Viterbi word alignment.

In conclusion, we have found a new structure over which we canrobustly predict which directly
models translational correspondence commensurate with how it is used in hierarchical SMT systems.
Surprisingly, this is also a more suitable structure for general phrase-based SMT systems than the phrase-
based alignment structure. Our model, LEAF, is comparable with a strong baseline when it is trained in
an unsupervised fashion. In Chapter 4 we will decompose LEAFto derive the sub-models of a powerful
semi-supervised model and show that this model has significantly better performance than two strong
baselines.
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3.8 Research Contribution

We designed a new generative model which models the structure of the word alignment problem directly.
We also developed a high performance distributed local search algorithm.
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Chapter 4

Minimum Error / Maximum Likelihood Training for Automatic
Word Alignment

4.1 Introduction

The technique of using labeled data and unlabeled data together for training is called semi-supervised
training. We are interested in developing a semi-supervised training technique for the word alignment
problem: we have a large number of parameters to estimate, a large amount of unlabeled data, and a
small amount of labeled data. We have a structured generative model, LEAF, which can be trained in
an unsupervised fashion on the unlabeled data, and now we would like to take advantage of the labeled
data.

When we refer to labeled data for the automatic word alignmentproblem, we mean parallel sentences
for which a correct word alignment has been annotated by humans. Unlabeled data refers to a pair of
sentences which we assume are parallel (as they were chosen using a sentence alignment program which
is known to have high accuracy in making this determination). Unlabeled data do not have human
annotated word alignments associated with them, which is why we call them unlabeled.

We first show how to discriminatively rerank the output of a generative model to minimize the errors
on the labeled data. We then present a new semi-supervised training approach called Minimum Error /
Maximum Likelihood training which incorporates steps which alternatively minimize error with respect
to the final performance criterion and maximize the likelihood of the underlying generative model.

4.2 Discriminative Reranking for Generative Word Alignment Models

The idea behind applying discriminative training to generative models is to enable us to use a discrimina-
tive criterion to access knowledge which can not be directlyintegrated into the generative model (because
of the need to reengineer the generative story).

Discriminative reranking of the output of a generative model uses a representation of the guesses of
the generative model. If this representation explicitly enumerates the best N complete hypotheses, it is
called an N best list. The hypotheses are ranked by their probabilities. Discriminatively reranking an N
best list allows the use of additional knowledge which wouldbe difficult to incorporate directly into the
generative model to produce a new ranking (i.e. different probability scores for the hypotheses in the N
best list). If additional knowledge sources are effectively combined with the knowledge sources in the
original generative model, this ranking will be better than(or at least as good as) the ranking output by
the original model.
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1 g(χi|ei) source word type
2 w

−1(i− µi|classe(ei)) choosing a head word
3 t1(fj |ei) head word translation
4 s(ψi|ei, γi) ψi is number of words in target cept
5 s0(ψ0|

P

i ψi) number of unaligned target words
6 t0(fj) identity of unaligned target words
7 t>1(fj |ei, classh(τi1)) non-head word translation
8 d1(△j|classe(eρ), classf (fj)) movement for target head words
9 d2(△j|classf (fj)) movement for left-most target non-head word
10 d>2(△j|classf (fj)) movement for subsequent target non-head words

11-20 (same features, target to source direction)

Table 4.1: Sub-models derived from LEAF

We present a new discriminative reranking method which we will apply to an N best list generated
using LEAF. After presenting relevant previous work on discriminative reranking, we will generalize this
to a new semi-supervised training approach.

4.2.1 Reinterpreting LEAF as a Log-Linear Model

In this section we will reinterpret LEAF as a log-linear model. This form of model will allow us to use
the distributions which make up LEAF in a discriminatively trained model, as we will explain in the next
two sections.

We use the term “sub-model” to refer to the components of our models. This emphasizes that most
of these “sub-models” are in fact models which are estimatedfrom data. These “sub-models” often have
parameters and rely on what we normally think of as “features” for their parameterization. However, not
all of our sub-models will have parameters (for instance, wecould imagine defining a sub-model which
is simply the percentage of the French words which are unaligned). A sub-model is simply a function
applied to an alignment which outputs a real number (we hope that the reader who prefers to call this a
“feature function” or “feature” will simply mentally translate “sub-model” to their preferred term). An
effective sub-model can be used to tell us whether to prefer one hypothesized alignment over another.
If we view the numbers output by a sub-model as negative log probabilities, then a high number (cost)
assigns the alignment a low probability, while a low number assigns the alignment a high probability.

In this section we reinterpret the probability distributions of LEAF listed in Table 4.1 as sub-models
of a log-linear model and estimate the weights associated with each sub-model. The model formulation
is given in Equation 4.1. We reinterpret the new generative model as having ten sub-models in the source
to target direction, and ten sub-models in the target to source direction, for a total of twenty sub-models,
which are listed in Table 4.1. Each sub-modelm has an associated weightλm. Our approach can also
be applied to additional sub-models which are not part of theoriginal generative model, which will be
discussed in Section 4.8.1.

pλ(a, f |e) =
exp(

∑

i λihi(f, a, e))
∑

f ′,a′ exp(
∑

i λihi(f
′, a′, e))

(4.1)

Given a vector of weightsλ, the alignment search problem, i.e. the search to return thebest alignment
â of e andf according to the model, is in Equation 4.2.

â = argmax
a

pλ(a|f, e) = argmax
a

pλ(a, f |e) = argmax
a

exp(
∑

i

λihi(f, a, e)) (4.2)
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4.2.2 Discriminative Training Algorithm

Given a hypothesized alignmenta, a gold standard alignmentg, and the English and French sentences,
we can calculate an error function,E(a, g, e, f). We would like to minimize the error function by finding
the bestλ settings. This is a supervised learning problem, the discriminative training problem, listed in
Equation 4.3.

argmin
λ

E(â, g, e, f) whereâ is as defined in Equation 4.2 (4.3)

Because this is a structured learning problem over the enormous space ofλ vectors, exact inference is
intractable. We will instead develop an iterative process for solving Equation 4.3. We will learn optimal
weights over a (growing) set of hypotheses for a small numberof parallel sentences for which we have
gold standard alignments. We use1−F-measure(α) as our error function, comparing hypothesized word
alignments for the discriminative training set (often referred to as the “development” or “dev” set) with
the gold standard.

The discriminative reranking algorithm is initialized with the parameters of the sub-modelsθ (which
are the final distributions estimated during unsupervised training of the generative model), an initial
choice of theλ vector, gold standard word alignments (labels) for the alignment discriminative training
set, the constant N specifying the size of the N best list1, and an empty master set of hypothesized
alignments. The algorithm consists of repeatedly running aloop which consists of three main steps:

LOOP:

1. Produce an N best list usingλ by solving Equation 4.2). If all of the hypotheses in the N best list
are already in the master set of hypotheses, the algorithm has converged, so terminate the loop.
Otherwise add new hypotheses to the master set of hypotheses.

2. In this step, we choose the bestλ vector to minimize error from a set of candidates. The candidates
are our currentλ vector, anyλ vectors which were chosen previously in Steps 2 and 3, and 999
randomly generated vectors. Given these candidateλ vectors we apply each of them to the master
set of hypotheses in order to determine the top ranked alignmenta′, and and then evaluate the error
functionE(a′, g, e, f). We setλ to theλ vector which resulted in the alignments with the lowest
error (i.e. the highest F-measure(α) score since we use1 − F-measure(α) as our error criterion),
so we have solved Equation 4.3.

3. Run a “city block” error minimization step which results in a new vectorλ. This minimization
also involves solving Equation 4.3, but is more complex thansimply evaluating the error of several
λ candidates. The implementation of “city block” minimization for our problem is discussed in
detail below.

Step 3 of the algorithm tries to find the bestλ setting over the set of hypotheses for the sentences
in the discriminative training set using numerical optimization. This is an M-dimensional optimization
problem (where M is the number of sub-models). Minimizing error for all of the weights at once is
not computationally feasible. We initially applied Powell’s Method (Press et al., 2002), using Brent’s
Method (Press et al., 2002) for line minimization, but foundthis to be ineffective. This is might be
because the assumption that the error surface is quadratic was violated and the line minimization was
then quickly trapped in local error minima which were much worse than the global error minima.

1N = 128 for our experiments
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Och (2003) has described an efficient exact one-dimensionalerror minimization technique for a sim-
ilar search problem, which we will adapt to our problem. Thisinvolves calculating a piecewise constant
function. This function, which is calculated for a fixed sub-modelm, is a function of one variablex. The
function directly evaluates the error of the hypotheses which would be picked by equation 4.2 if we hold
all weights constant, except for the weight (λm for somem) under consideration, which is set tox. The
formula for such a function for sub-modelm, which we callfm(x) is given in Equation 4.4.

fm(x) = E(argmax
a

exp(x ∗ hm(f, a, e) +
∑

i6=m

λihi(f, a, e)), g, e, f) (4.4)

We implement “city block” minimization by first calculatingthe M functions. Once we have calcu-
lated an explicit representation of each of the functionsfm, we can quickly find the error minima (thex
value resulting in lowest error) for eachfm. We then choose the sub-modelm and the valuex resulting
in the lowest error minima and setλm = x. We iterate this process until no further reduction in errorcan
be found.

We can in fact generalize Equation 4.4 to calculate a function for any line in the M-dimensional
space (not just the M unit vectors). It would seem obvious that we should use exact line minimizations in
place of Brent’s method and apply Powell’s method. However,counter-intuitively, we have found that in
practice Powell’s method is quickly trapped in local error minima even with the exact line minimizations.
We have instead found it more effective to perform “city block” minimization over just the M unit vectors.

In automatic word alignment problems using a large number ofsub-models, the outcome of Step 3
is sensitive to the starting point. If we consider just steps2 and 3, then we can define a search error as a
failure to find the bestλ value for minimizing the error of the hypothesis chosen fromthe current master
set of hypotheses using Equation 4.2. Performing step 2, which vets both theλ vectors which were found
useful previously and a large number of randomλ vectors, and then using the best result as the starting
point of the “city block” minimization in step 3 seems to reduce search errors to an acceptable level, but
we believe that in future work we will be able to improve on this.

4.3 Previous Work in Discriminative Training

Discriminative reranking has been used successfully in many areas of NLP. A good example area is
syntactic parsing. For parsing, discriminative rerankingwas introduced by (Collins, 2000). He starts
with an underlying generative model which models the joint generation of a sentence and its parse-tree.
Given a new sentence to parse, he first selects the best N parse-trees according to his generative model.
Then he scores new features, which could not be easily integrated into a new generative story because
their roles in generation would overlap, and learns discriminatively how to rerank the parses in his N best
list. He uses a greedy feature selection technique to determine which features are important. Recently
a very large number of different approaches to discrimininative reranking have been applied to syntactic
parsing, and there have also been a large number of more general discriminative training algorithms
used. One discriminative training algorithm of particularinterest to us is training using the averaged
perceptron (Collins, 2002), which was refined and applied toword alignment by Moore (2005); this will
be discussed in Section 4.4.3.

Discriminative reranking has also been applied to machine translation. Och et al. (2003) and Och
et al. (2004) used a large number of feature functions and thediscriminative training technique defined by
Och (2003) to rerank N best lists of hypothesized English translations for Chinese sentences to improve
the quality of translations. Shen and Joshi (2005) evaluated maximum margin approaches for the same
task.

51



Other approaches to discriminative training based on an underlying generative model have been ap-
plied in NLP. We present work in the area of machine translation, as it is relevant to the discriminative
training approach we will take. Och and Ney (2002) introduced a log-linear model for translation com-
posed of a collection of sub-models which are estimated using various techniques. These included sev-
eral sub-models estimated by taking the relative frequencyof consecutive word phrases extracted from
the one-best output of symmetrized Model 4 alignments and also included sub-models which backed off
estimation of phrase-to-phrase translation probabilities to a word-level translation lexicon. Both the max-
imum mutual information (MMI) and the minimum classification error (MCE) criteria were tried. Och
(2003) introduced direct error minimization for statistical machine translation using the same log-linear
model, and showed that discriminative training to the final performance criterion, BLEU, is superior to
training using MMI or MCE. Other optimization techniques are possible with log-linear models. For
instance Zens and Ney (2004) used the downhill simplex method to train weights for both phrase-based
and alignment-template-based translation, and Cettolo and Federico (2004) used the downhill simplex
method to train weights for a log-linear model involving a reinterpretation of the Model 4 sub-models
for translation.

The approaches to discriminative reranking and discriminative training for Machine Translation
which we have discussed use a log-linear model to integrate sub-models of widely varying granularity.
The log-linear model is trained either to a criterion which maximizes entropy, or to directly maximize
the final performance criterion. Och (2003) showed that the latter performs well in practice. When train-
ing to the final performance criterion is chosen, two approaches to discriminative training are generally
used. The simpler approach is to generate candidate vectorsof weights and evaluate the results; the
down simplex optimization method (Press et al., 2002) is commonly applied here. We apply this type
of approach in step 2 of our discriminative algorithm in an even simpler fashion, by simply generating
random vectors and evaluating them. The other approach, introduced for translation by Och (2003), is to
optimize over N best lists using exact line minimizations. This puts the performance criterion inside the
optimization. We use exact line minimizations in the “city block” minimization which is performed in
step 3 of our algorithm.

4.4 Previous Work in Discriminative Modeling for Word Alignment

Previous work on discriminative modeling for word-alignment differs most strongly from the log-linear
approach in that it generally views word-alignment as a supervised task. However, all of the state of the
art approaches depend on using features from an unsupervised generative model in order to obtain their
best results because of the small amount of gold standard word alignments available (Liu et al., 2005;
Ittycheriah & Roukos, 2005; Taskar et al., 2005; Ayan & Dorr,2006b; Lacoste-Julien et al., 2006; Fraser
& Marcu, 2006; Blunsom & Cohn, 2006; Moore et al., 2006).

We are most interested in discriminative models which allowthe use of many-to-many non-contiguous
alignment structure. We are less interested in discriminative models using 1-to-N structure, as the use of
1-to-N requires a heuristic step following the discriminative training to obtain the M-to-N discontiguous
alignments actually used to build SMT systems. The use of such a heuristic step means that alignment
quality can not be directly optimized. We will show in Section 4.8 that optimizing F-measure(α) for
1-to-N and M-to-1 alignment models separately (and then combining their predictions using a sym-
metrization heuristic such as “Union”) is inferior to directly optimizing F-measure(α) for our M-to-N
alignment model.

We are not aware of previous work on discriminative models with a “phrase-based” contiguous M-
to-N structure, and given the recent success of hierarchical SMT models (which support gaps in the
translation rules) we doubt this is would have strong performance for most data sets. However, it would

52



be simple to implement this to test this assumption. As we discussed in Section 3.2.3, phrase-based
structure can be modeled as a special case of LEAF (however, it is important to remember that the
conditioning of the generation decisions would be on the head words rather than on the full phrase).
EMD could then be applied without modification to a log-linear model using the sub-models derived
from this special LEAF model.

4.4.1 Discriminative Models of 1-to-1 Structure

After Brown et al. (1993), much of the initial work on generative modeling was done using 1-to-1
structure. This structure is not a good choice for maximizing SMT performance, but is an interesting
starting point for researchers who then go on to work on more highly structured output spaces. In
particular, search limited to a 1-to-1 alignment structureis fairly simple even for models which use very
complex features.

Taskar et al. (2005) took a similar approach to the models of Melamed (2000) and Cherry and Lin
(2003), but in a discriminative context, casting the word alignment problem as a maximum weighted
bipartite matching problem, which is estimated within the large margin framework using a quadratic
program. They use such features as DICE score, orthographicsimilarity and proximity of (absolute)
positions.

Liu et al. (2005) built a log-linear model using the IBM Model3 alignment score in both directions
and discriminatively reranked it. Additional sub-models were a POS-based lexicon model, and a dictio-
nary based lexicon model. They showed small improvements inbalanced F-measure with Sure/Possible
over symmetrized Model 4, but did not show what the effect is on translation quality. Their discrimi-
native reranking approach is similar to ours, but with important differences. They did not decompose
the underlying generative model, which is IBM Model 3. Instead, they used two features based on the
score of the full model. These features model 1-to-many and many-to-1 alignments respectively, so they
can not directly model many-to-many alignments. One of these two feature functions must have a value
of zero unless the hypothesized alignment is a 1-to-1 alignment. The other main difference is that they
trained to the Maximum Entropy criterion rather than maximizing the final performance criterion, though
they indicate interest in doing this and they use heuristicsto try to pick local maxima of the Maximum
Entropy training which are better according to the final performance criterion.

4.4.2 Discriminative Models of 1-to-N Discontinuous Structure

The 1-to-N structure, used initially in the generative models defined by Brown et al. (1993), has a long
and distinguished history. Discriminative approaches which adopt the 1-to-N structure are a logical
extension of this.

Berger et al. (1996) defined a word level lexicon model which used varying amounts of context up to
3 words in each direction from the word being translated, anddiscussed how to train this representation.
Garćıa-Varea et al. (2002) implemented this in an alignment package. This work defined the lexicon
using both word contexts and word class contexts. The systemwas built by first completely training the
IBM models to obtain both the 1-to-N Viterbi alignments in a single direction and the sub-models repre-
senting fertility and distortion. The weights of the features for the special lexicon were trained using the
Viterbi alignments as training data and the maximum entropycriterion. The fertility and distortion mod-
els were then retrained, holding the special lexicon model fixed. Finally the presumed Viterbi alignment
was calculated, and this was returned as the final discriminatively reranked result. This work resulted in
small gains in balanced F-measure over Model 4 and has not been shown to improve translation quality.

Kumar and Byrne (2002) presented a framework for searching to minimize the Bayes Risk, applied
to word alignment. The work presented used IBM Model 3 without a reordering model (i.e., translation
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and fertility were modeled as in Model 3, but distortion was modeled as a uniform distribution). The
insights in this work could be applied in our framework in thefuture, once we have a better posterior
distribution over word alignments.

Ittycheriah and Roukos (2005) presented a 1-to-N discriminative model trained using the Maximum
Entropy criterion specifically for the task of Arabic/English word alignment. They showed balanced
F-Measure results which were competitive with 1-to-N GIZA++, and are one of the few works which
also compared the resulting MT performance, where they had inconsistent gains over 1-to-N GIZA++
(unfortunately there was no comparison with heuristicallysymmetrized GIZA++, which would have
been a stronger baseline). They invested significant effortin sub-model engineering (producing both sub-
models specific to Arabic/English alignment and sub-modelswhich would be useful for other language
pairs), while we use sub-models which are derived from LEAF and a few heuristic features. In contrast
to their work, all of the sub-models we have presented are language independent.

Blunsom and Cohn (2006) created a Conditional Random Field (CRF) model for the 1-to-N align-
ment task, and trained it to minimize AER. The model structure was similar to the HMM model in that
there was a first-order Markov assumption, but because they were using a CRF they were able to inte-
grate overlapping features (lexica based on string similarity, words and POS tags were all scored for the
same link), which would have been difficult to integrate intoa generative story.

Previous to our work with LEAF, we used 1-to-N structure within the work we did on training a
log-linear model using a mix of features derived from IBM Model 4 and heuristics (Fraser & Marcu,
2006). In this work we optimized the F-Measure(α) of models in both directions independently, but
at each iteration of training we estimated additional word-level lexicons by heuristically symmetrizing
the Viterbi alignments taken from both training directions. This is similar to the symmetrized lexicon
training of Zens et al. (2004). We will compare the current approach using sub-models derived from
LEAF with our previous approach using sub-models derived from Model 4 in the experiments in Section
4.8.

4.4.3 Discriminative Models of 1-to-N and M-to-1 Discontinuous Structure

Lacoste-Julien et al. (2006) created a discriminative model restricted to 1-to-1, 1-to-2 and 2-to-1 align-
ments. This work extends the framework of Taskar et al. (2005) to the “quadratic” case, where there are
features on pairs of edges rather than individual edges, allowing them to robustly model 1-to-2 and 2-to-1
alignments. Parameter estimation can be solved exactly as aquadratic assignment problem, but can also
be relaxed to be solvable as a quadratic program. Predictionis solved as an integer linear program, but
can this also be relaxed. The (relative) tractability of search in this framework is attractive, but this is at
the cost of the unreasonable 1-to-2 and 2-to-1 assumptions and weaker features than the features derived
from LEAF. This work valued tractability over the richness of the features, which is at odds with our
approach. The approach also requires the use of Hamming lossas the training criterion. Hamming loss
has been shown to be effective in reducing AER, but no work hasbeen done to show that it is effective for
optimizing a metric which correlates well with machine translation performance. The best results were
obtained using features based on intersected Model 4 and symmetric HMMs trained to agree (Liang
et al., 2006). The generated alignments were not evaluated in a statistical machine translation system.

Moore et al. (2006) introduced a sequence of two discriminative models called Stage 1 and Stage 2.
The final alignments generated are 1-to-1, 1-to-2, 1-to-3, 2-to-1 or 3-to-1 alignments. Unlike the work
of Lacoste-Julien et al. (2006), there is nothing in the framework which inherently restricts the N and M
variables in the 1-to-N and M-to-1 alignments modeled, and we assume that the choice of 3 for both of
these variables was a good choice to minimize AER for the French/English alignment task considered.
The Stage 1 model is estimated from the unannotated full training data and the annotated discriminative
training set. The Stage 2 model is estimated using the predictions of Stage 1. The features used in
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Stage 1 include alignment geometry, exact string match, lexical features (for words occurring two or
more times in the small discriminative training set), and a ranking induced from the log likelihood ratio
calculated over cooccurences of words occurring in parallel sentences in the full training data. The stage
2 model uses statistics taken from the stage 1 model’s predictions on the full training set, in particular
an empirically estimated feature which models the probability of a single source word being aligned to
a bag of up to 3 target words (or vice versa) and an empiricallyestimated jump distance feature. The
model is trained using the averaged perceptron which requires a heuristic search to find the most probable
alignment just as ours does, but a beam decoder is used ratherthan a hillclimbing search. The averaged
perceptron training was compared with using a support vector machine formulation which is designed
for structured prediction, and the two approaches had similar performance. The conclusion of this work,
that the richness of the features is more important than the discriminative training technique, matches
our intuition. Similarly to the work of Lacoste-Julien et al. (2006) the best results were obtained using
intersected Model 4 and HMMs trained to agree, and MT performance was not evaluated. We view both
of these works as providing an interesting study of features, some of which we intend to try adding to
our model in future work.

4.4.4 Discriminative Models of M-to-N Discontinuous Structure

Ayan et al. (2005) used transformation based learning to expand the 1-to-1 and 1-to-N discontinu-
ous alignments generated from generative statistical alignment models to general M-to-N discontiguous
alignments. They used a small gold word alignment set to learn effective transformations (additions or
deletions to the alignment) which used context modeled using closed-class words, POS tags, and depen-
dency trees. This work integrates interesting features which we will consider using in the future in our
semi-supervised approach.

Ayan and Dorr (2006b) used a Maximum Entropy classifier to combine the predictions of several
alignment systems. Based on features over the input alignment set geometry and POS tags, they learned
to classify whether a particular link that is predicted by atleast one of the input alignments should
be included in the final alignment. These decisions were madefor each link independently as they are
conditioned only on the input and not the output. The experiments performed included combining Model
4 and the HMM extensions of Lopez and Resnik (2005). They showed significant improvements in MT
quality over heuristic symmetrization for small data sets.Our approach, in contrast, involves a powerful
model where alignment links are not considered independently, but maximizing this model requires a
search over possible alignment bigraphs of the whole sentence. We could add the predictions of other
models into our model in a similar fashion to their work. We have in fact tried combining information
in a similar fashion using alignments generated from the HMMViterbi alignments (which are also what
we bootstrap from) in conjunction with using three heuristic symmetrization metrics and found this to be
ineffective when using sub-models derived from LEAF (although we note that these same sub-models
were effective in our previous 1-to-N log-linear model (Fraser & Marcu, 2006)).

4.5 Semi-Supervised Learning

During our discussion of semi-supervised training, we drawa distinction between discriminative training
and semi-supervised training, as applied to generative models. In discriminative training we rerank the
predictions of a generative model to obtain predictions of higher quality. There is no mechanism so that
the discriminative criterion can affect the estimates of the underlying generative model. Discriminative
training (when applied to an underlying generative model) can be viewed as a weak form of semi-
supervised learning which is missing this important feedback loop.
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Most approaches to semi-supervised learning require that the labeled data be sufficient to make a
good initial estimate which is then refined using unlabeled data (Seeger, 2000). In fact, the problem of
semi-supervised learning is often defined as “using unlabeled data to help supervised learning” (Seeger,
2000). Most work on semi-supervised learning uses underlying generative models which have distribu-
tions with a relatively small number of parameters. An initial model is estimated in a supervised fashion
using the labeled data, and this supervised model is used to attach labels (or a probability distribution
over labels) to the unlabeled data, then a new supervised model is estimated, and this is iterated.

For instance, both Nigam et al. (2000) and Miller and Browning (2003) train an initial supervised
classifier and then use EM to improve the initial estimate of posterior class membership probabilities.
In cases where there are only a small number of labels available but a very large number of parameters
must be estimated, such as when the number of parameters increases as training data increases, this
is not practical. If this technique is applied in these cases, it will lead to the so-called “overconfident
pseudo-labeling problem” (Seeger, 2000), where the initial labels of very poor quality assigned to the
unlabeled data will at the best have no effect, and at the worst dominate the initial model estimated in the
M-step causing convergence to a local minima of very poor quality (with respect to the final performance
criterion).

We present the following alternative, which alternativelyminimizes error and maximizes likelihood.
Our new approach applies in cases where the amount of labeleddata is not sufficient to do supervised
estimation of an initial model of reasonable quality, but wehave large amounts of unlabeled data and a
generative model which can be trained in an unsupervised fashion. We call our training approach “Min-
imum Error / Maximum Likelihood Training”, and we introducethe “EMD” semi-supervised training
algorithm to perform the training.

4.6 Minimum Error / Maximum Likelihood Training

We extend approximate EM training to perform a new type of training which we call Minimum Error /
Maximum Likelihood Training. The intuition behind this approach to semi-supervised training is that
we wish to obtain the advantages of both discriminative training (error minimization) and approximate
EM (which allows us to estimate a large numbers of parameterseffectively even though we have too few
gold standard word alignments to do this in a supervised fashion). We introduce the EMD algorithm,
in which discriminative training is used to control the contributions of sub-models (thereby minimizing
error), and a procedure similar to one iteration of approximate EM is used to estimate the large number
of sub-model parameters, by using steps which increase likelihood.

Intuitively, in approximate EM training for word alignment(Brown et al., 1993), the E-step corre-
sponds to calculating the probability of all alignments according to the current model estimate, while
the M-step is the creation of a new model estimate given the probability distribution over alignments
calculated in the E-step.

In the E-step ideally all possible alignments should be enumerated and labeled withp(a|e, f), but this
is intractable. For the M-step, we would like to count over all possible alignments for each sentence pair,
weighted by their probability according to the model estimated at the previous step. Because this is not
tractable, we make the assumption that the single assumed Viterbi alignment can be used to update our
estimate in the M-step. This approximation is called Viterbi training. Neal and Hinton (1998) analyze
approximate EM training and motivate this type of variant.

The basic intuition behind our approach to semi-supervisedlearning is that we wish to obtain the
advantages of both discriminative training and approximate EM. We use discriminative training to con-
trol the contributions of sub-models, which vary in granularity from large numbers of parameters to a
single parameter (this can be a single parameter in the original generative model, which we are training
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discriminatively here). We use a sub-procedure very similar to approximate EM to train the often very
large numbers of parameters of the sub-models themselves.

Here is an initial brief outline of the approach. We first determine a decomposition of the generative
model into sub-models. We then add additional sub-models which were not in the generative model.

A single iteration of EMD training consists of a step which resembles the E-step in EM, followed by
a step which resembles the M-step in EM, followed by a “discriminative step”, which we call the D-step.
In the step which resembles the E-step, we use the weightsλ and the estimates of all sub-models (both
the sub-models in the generative model and those sub-modelswhich are not in the generative model) to
predict alignments for the entire training set. In the step which resembles the M-step, we reestimate the
sub-models dependent on the hypothesized alignments (for example, the sub-models which are distri-
butions from the generative model). The D-step estimates the weight vectorλ which minimizes error.
It does this by repeatedly reranking the output of the generative model for a small set of sentences for
which we have labels. This completes one iteration of training.

We start the EMD algorithm by estimating the sub-models taken from the generative model by boot-
strapping as in the unsupervised case. We then carry out an initial D-step. After this “iteration 0”,
complete iterations of EMD training are performed, starting with iteration 1.

4.6.1 EMD Algorithm

A sketch of the EMD algorithm applied to our extended model ispresented in Figure 4.1. Parameters
have a superscriptt representing their value at iterationt. The parameters of the iteration dependent
sub-modelm at timet areθtm, while the parameters of the sub-modelm which is iteration independent
is denotedθ′m. We initialize the algorithm with the gold standard word alignments (labels) of the word
alignment discriminative training set, an initialλ, N, the starting alignments (the final HMM Viterbi
alignment), and the parameters of the heuristic sub-modelswhich are iteration independent (θ′). In line
2, we make iteration 0 estimates of the sub-models whose parameters are estimated from the current
Viterbi alignment (these are sub-models 1 toM ′, and include the sub-models based on distributions used
in LEAF). In line 3, we run discriminative training using thealgorithm from Section 4.2.2. In line 4,
we measure the error of the resultingλ vector. In the main loop in line 7 we align the full training set
(similar to the E-step of EM), and in line 8 we estimate the iteration-dependent sub-models (similar to
the M-step of EM). Then we perform discriminative rerankingin line 9 and check for convergence in
lines 10 and 11 (convergence has been reached if error was notdecreased from the previous iteration).
The output of the algorithm is hypothesized alignments of the entire training corpus (calculated in line
7).

In the general word alignment problem, the entire search space can not be enumerated, which is the
reason we have to do multiple iterations of the loop of the “Discrim” subroutine (which was presented in
Section 4.2.2). For each iterationi of the the “Discrim” subroutine, we find a new vectorλ which then
causes us to enumerate a different portion of the search space in Step 1 of the “Discrim” subroutine. We
could run this process until we no longer search a different portion of the search space (i.e., we find no
new N best list entries), at which point we would assume we have converged. In practice we stop when
the error does not decrease. Note that if EMD is used for a different problem where the entire search
space can be explicitly enumerated, the code inside the loopof the “Discrim” algorithm would only need
to be executed once per outer loop iterationt.

When re-estimating the generative model we use the hypothesized labels for the discriminative train-
ing set, rather than the gold standard labels. Otherwise we would overfit the labels on the discriminative
set and so we would be unable to continue using predictions todetermine good weights.

It is important to emphasize that we are not presenting just adiscriminative reranking step but instead
a fully integrated approach, taking advantage of the fact that the power of each sub-model changes
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1: Algorithm EMD(labels, λ′, N, starting align-
ments,θ′)

2: bootstrapθ0m for m = 1 toM ′

3: λ0 = Discrim(θ0, θ′, λ′, labels, N)
4: e0 = Error(λ0)
5: t = 1
6: loop
7: align full training set usingλt−1, θt−1 andθ′

8: estimateθtm for m = 1 toM ′

9: λt = Discrim(θt, θ′, λt−1, labels, N)
10: et = Error(λt)
11: if et >= et−1 then
12: terminate loop
13: end if
14: t = t+ 1
15: end loop
16: return hypothesized alignments of full training

set

Figure 4.1: Sketch of the EMD algorithm

over the training process (i.e., from iteration to iteration of training). It is the ability to determine how
discriminative each sub-model is at each iteration of semi-supervised training and the ability to directly
train a few sub-model parameters directly at each iterationof semi-supervised training which gives us
performance superior to discriminative reranking (where these two things can only be done once, after
the estimation of the generative model).

4.7 Previous Work on Semi-Supervised Learning

Previous approaches for using EM for combining labeled and unlabeled data have often been applied to
unstructured classification. An initial classifier is learned from labeled data, and then this classifier is
used to label unlabeled data with posterior class membership probabilities. EM is then used to improve
the initial estimate of posterior class membership probabilities. For labeled data, the probability of the
correct class is maximized, and this improves estimates of class membership for the unlabeled data. For
unlabeled data the maximum a posteriori (MAP) solution is selected.

There is a large body of work on semi-supervised learning with parameterized distributions that are
described by a small number of parameters; we present a few examples. Miller and Uyar (1997) used
unlabeled data and EM to augment a mixture of experts. Millerand Browning (2003) used an extension
of the EM algorithm for a task modeled as a mixture of Gaussians. Their algorithm is similar to the
algorithm we propose in that they extended the EM algorithm by incorporating an additional separate
optimization for training a small number of parameters, butthey trained these parameters to maximize
complete data log likelihood rather than the final performance criterion.

There has also been some work on semi-supervised learning when a much larger number of param-
eters must be estimated. Nigam et al. (2000) addressed a textclassification task where each class is
modeled as multiple mixtures over the entire vocabulary. They estimated a Naive Bayes classifier over
the labeled data and used it to provide initial MAP estimatesfor unlabeled documents. They then ran EM
as described above. They introduced a single mixing parameter to attempt to control problems with the
estimates from the unlabeled data washing out the estimatesfrom the labeled data. Their approach would
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Figure 4.2: Two alignments with the same translational correspondence

not work if applied to our scenario as the number of labeled examples is small, so the initial labellings of
the unlabeled data would be very poor, causing the “overconfident pseudo-labeling problem” we already
mentioned in Section 4.5.

Callison-Burch et al. (2004) performed a preliminary studyof the issue of semi-supervised train-
ing for word alignment. They addressed their lack of manually annotated data by using automatically
annotated data as a replacement for human annotated data andlooking at the effect of semi-supervised
learning on both AER and BLEU, following the work of Nigam et al. (2000). However, their simu-
lated supervised data was annotated using GIZA++, which, aswe have already shown, can be further
improved substantially, so we do not believe that they succeeded in realistically simulating having large
amounts of manually annotated data. However, their experiments on combining higher and low quality
automatically generated alignments did result in an important finding. They showed that it is important
to ensure that the larger amount of low quality annotations do not “wash out” the parameters estimated
from the higher quality annotations, which is an insight we will use in the experimental section.

Two approaches that are more similar in spirit to our work involve the use of labels in reinforce-
ment learning and the use of labels in clustering. Ivanov et al. (2001) used discriminative training in
a reinforcement learning context in a similar way to our adding of a discriminative training step to an
unsupervised context. A large body of work uses semi-supervised learning for clustering by imposing
constraints on the clusters. Basu et al. (2004) is a good example, where the system was supplied with
lists of pairs of instances labeled as belonging to the same or different clusters. Our work can be moti-
vated in a similar fashion to theirs, but the details are quite different. We are solving a difficult structured
prediction problem which involves a search over bigraphs for each parallel sentence pair.

4.8 Experiments

We perform experiments on the two large alignments tasks from Chapter 3, for Arabic/English and
French/English data sets. Statistics for these sets are shown in Table 3.3 on page 35. All of the data used
is available from the Linguistic Data Consortium except forthe French/English gold standard alignments
which are available from the authors.

We showed that F-Measure is effective in predicting BLEU in Chapter 2. Therefore, we use1 −
F-Measure(α) as our error criterion in discriminative training. We established that it is important to tune
α (the trade-off between Precision and Recall) to maximize performance.

We remind the reader of the problem we discovered in Chapter 2, which is that two alignments
which have the same translational correspondence can have different F-Measures. An example is shown
in Figure 4.2. To overcome this problem we fully interlinkedthe transitive closure of the undirected
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1 g(χi|ei) source word type 9 d2(△j|classf (fj)) movement for left-most
target non-head word

2 w
−1(i− µi|classe(ei)) choosing a head word 10 d>2(△j|classf (fj)) movement for subse-

quent target non-head words
3 t1(fj |ei) head word translation 11 t(fj |ei) translation without dependency on

word-type
4 s(ψi|ei, γi) ψi is number of words in target

cept
12 t(fj |ei) translation table from final HMM it-

eration
5 s0(ψ0|

P

i ψi) number of unaligned target
words

13 s(ψi|γi) target cept size without dependency
on source head worde

6 t0(fj) identity of unaligned target words 14 s(ψi|ei) target cept size without dependency
onγi

7 t>1(fj |ei, classh(τi1)) non-head word trans-
lation

15 target spurious word penalty

8 d1(△j|classe(eρ), classf (fj)) movement for
target head words

16-30 (same features, other direction)

Table 4.2: Sub-models used together with the EMD algorithm

bigraph formed by each alignment hypothesized by our baseline alignment systems2. This operation
maps the alignment shown to the left in Figure 4.2 to the alignment shown to the right. Recall that this
operation does not change the collection of phrases or rulesextracted from a hypothesized alignment.

The best settings ofα wereα = 0.1 for the Arabic/English task andα = 0.4 for the French/English
task, , see Chapter 2 for details of the process used to choosethese constants.

4.8.1 Evaluating EMD+LEAF

We present an experiment which evaluates the efficacy of the EMD training algorithm when applied to
a log-linear model. We decompose LEAF, presented in Section3.2, in both translation directions to
provide the initial feature functions for the log-linear model, features 1 to 10 and 16 to 25 in Table 4.2.

To provide additional robustness, we use back-offs for the translation decisions (features 11 and
26), the HMM translation tables (features 12 and 27) and back-offs for the target cept size distributions
(features 13, 14, 28 and 29 in Table 4.2). We also use heuristics which directly control the number of
unaligned words we generate (features 15 and 30 in Table 4.2), which allows us to control the trade-off
between Precision and Recall which is required to optimize any particularα used with F-Measure(α).

We perform one main comparison, which is of semi-supervisedsystems. This is also what we will
use to produce alignments for evaluating SMT performance. We compare semi-supervised LEAF with
our previous state of the art semi-supervised system (Fraser & Marcu, 2006) which also uses the EMD
algorithm but separately optimizes 1-to-N and M-to-1 translation performance using sub-models derived
from Model 4 and a larger number of heuristic models than are used with LEAF. We perform translation
experiments on the alignments generated using semi-supervised training to verify that the improvements
in F-Measure result in increases in BLEU. Note that the timings for the first E-Step of the French/English
experiments are presented in Appendix C.1. The current (unoptimized) LEAF search implementation is
slow, speeding up search is discussed in the same appendix.

2All of the gold standard alignments were fully interlinked as distributed. We did not modify the gold
standard alignments.
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FRENCH/ENGLISH ARABIC/ENGLISH

SYSTEM F (α = 0.4) BLEU F (α = 0.1) BLEU
GIZA++ 73.5 30.63 75.8 51.55
FRASER AND MARCU (2006) 74.1 31.40 79.1 52.89
LEAF UNSUPERVISED 74.5 72.3
LEAF SEMI-SUPERVISED 76.3 31.86 84.5 54.34

Table 4.3: Experimental Results

In order to have the results in a single table, we also comparethe unsupervised LEAF system with
GIZA++ Model 4. This gives an idea as to the performance of theunsupervised model, and is a repeat
of the results from Section 3.5. The reader is referred therefor further explanation.

To build all alignment systems, we start with 5 iterations ofModel 1 followed by 4 iterations of
HMM (Vogel et al., 1996), as implemented in GIZA++ (Och & Ney,2003), and use the final iteration of
HMM to perform the bootstrap. To generate the final output forall non-LEAF systems, we take the best
performing of the “Union”, “Refined” and “Intersection” symmetrization heuristics (Och & Ney, 2003)
to combine the 1-to-N and M-to-1 directions resulting in a M-to-N non-consecutive alignment. Because
these systems do not output fully linked alignments, we fully link the resulting alignments. Once again,
the reader should recall that this does not change the set of rules or phrases that can be extracted using
an alignment.

Results for the experiments on the French/English data set are shown in Table 4.3. We ran GIZA++
for four iterations of Model 4 and used the “Refined” heuristic (line 1). We ran the baseline semi-
supervised system for two iterations (line 2), and in contrast with Fraser and Marcu (2006) we found
that the best symmetrization heuristic for this system was “Union”, which is most likely due to our use
of fully linked alignments. We observe that LEAF unsupervised (line 3) is competitive with GIZA++
(line 1), and is in fact competitive with the baseline semi-supervised result (line 2). We ran the LEAF
semi-supervised system for two iterations (line 4). The best result is the LEAF semi-supervised system,
with a gain of 1.8 F-Measure over the LEAF unsupervised system and a gain of 2.8 F-Measure over
GIZA++.

For French/English translation we use a state of the art phrase-based MT system similar to those of
Och and Ney (2004) and Koehn et al. (2003). The translation test data is described in Table 3.5.1. We
use two trigram language models, one built using the Englishportion of the training data and the other
built using additional English news data. The BLEU scores reported are calculated using lowercased and
tokenized data. For semi-supervised LEAF the gain of 0.46 BLEU over the semi-supervised baseline
is not statistically significant (a gain of 0.78 BLEU would berequired), but LEAF semi-supervised
compared with GIZA++ is significant, with a gain of 1.23 BLEU.We note that a gain of 1.23 BLEU
shows a large gain in translation quality over that obtainedusing GIZA++ because for the French/English
task BLEU is calculated using only a single reference (a gainof 1.23 BLEU using a single reference is a
larger gain than a gain of 1.23 BLEU when using four references).

Results for the Arabic/English data set are also shown in Table 4.3. We used a large gold standard
word alignment set available from the LDC. We ran GIZA++ for four iterations of Model 4 and used the
“Union” heuristic. We compare GIZA++ (line 1) with one iteration of the unsupervised LEAF model
(line 3). The unsupervised LEAF system is worse than four iterations of GIZA++ Model 4. We believe
that the features in LEAF are too high dimensional to use for the Arabic/English task without the back-
offs available in the semi-supervised models. The baselinesemi-supervised system (line 2) was run for
three iterations and the resulting alignments were combined with the “Union” heuristic. We ran the LEAF
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semi-supervised system for two iterations. The best resultis the LEAF semi-supervised system (line 4),
with a gain of 5.4 F-Measure over the baseline semi-supervised system and a gain of 8.7 F-Measure over
GIZA++.

For Arabic/English translation we train the state of the arthierarchical model Hiero (Chiang, 2005)
using our Viterbi alignments. The translation test data used is described in Table 3.5.1. We use two
trigram language models, one built using the English portion of the training data and the other built
using additional English news data. The test set is from the NIST 2005 translation task. LEAF had the
best performance scoring 1.43 BLEU better than the baselinesemi-supervised system and scoring 2.79
BLEU better than GIZA++, both of which are statistically significant.

The success of training our new log-linear model, based on sub-models derived from LEAF, to mini-
mize the1− F-Measure(α) error criterion using the semi-supervised EMD training algorithm combines
the main contributions of this thesis. The BLEU score increases achieved by this system are large for
both tasks3. We now have a principled model over the alignment structurein which we are interested,
and we can obtain a posterior probability distribution overlikely alignments rather than being restricted
to heuristically combining the 1-best predictions of a 1-to-N and M-to-1 model as was previously done,
which will enable new directions for future research. We have shown that the predictions of our new
model substantially improve state of the art machine translations systems on some of the largest, most
challenging, data sets available.

4.8.2 Giving GIZA++ Access to Human Annotated Alignments

We performed an additional experiment for the French/English alignment task aimed at understanding
the potential contribution of the word aligned data withoutthe new model and training algorithm. Like
Ittycheriah and Roukos (2005), we converted the alignment discriminative training corpus links into a
special corpus where the parallel “sentences” consist onlyof the single English and French word involved
in each link. We found that the information in the links was “washed out” by the rest of the data and
resulted in no change in the alignment test set’s F-Measure.Callison-Burch et al. (2004) showed in
their work on combining alignments of lower and higher quality that the alignments of higher quality
should be given a much higher weight than the lower quality alignments. Using this insight, we found
that adding 10,000 copies of this special corpus to our training data resulted in the highest alignment test
set gain, which was a small gain of0.3 F-Measure. This result suggests that while the link information is
directly useful for improving F-Measure, our semi-supervised training method is producing much larger
improvements.

4.8.3 Integrating an Arabic Name Transliteration Model

We report in this section on integrating an Arabic Name transliteration model, developed by Ulf Her-
mjakob. This model reads parallel sentences and outputs anylikely transliteration matches between a
single Arabic token and one or more English tokens along witha confidence score.

The interesting aspect of integrating this as a sub-model isthat it can not be directly integrated as a
phrase to phrase matching. This is because even when there isa likely transliteration match, this match
often does not fully account for the complete translationalcorrespondence involved.

For instance, suppose that in the Arabic sentence of a parallel Arabic/English sentence pair the Arabic
word “Mohammed” occurs. If the English word “Mohammed” occurs twice in the English sentence, a

3We remind the reader that the French/English result is basedon BLEU calculated using only a single
reference, for which a gain of 1.2 BLEU% is large.
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transliteration model is unable to determine which one to match or whether to match both. We solve this
problem by providing a constraint on the alignment. We say that the alignment must align at least one of
the English “Mohammed” tokens with the Arabic “Mohammed” token, or a penalty is paid. We train a
penalty sub-model in the log-linear model which pays a fixed cost for violating such constraints, which
has the effect of setting a decrease in cost which must be obtained from other sub-models in order for an
alignment in which the constraint is violated to more probable than one obeying the constraint. Note that
this type of “OR” constraint would be very difficult to specify in the LEAF generative story.

A similar case occurs where the combination of an English transliteration of an Arabic content word
and one or more English function words should be aligned as a unit to the single Arabic content word.
The transliteration model has a limited ability to determine where English function words should be
aligned, but for more complicated decisions the decision requires knowledge which can be found in the
other sub-models which can determine whether alignment geometry is probable, likely non-head words
to attach to the English head word, etc. This is again implemented as a constraint, which is placed on the
alignment of the content word.

Adding constraints determined by the transliteration package lead to an increase of 0.2 F-Measure
over the system without these constraints. The fit on the development corpus was 0.5 F-Measure better,
indicating that some overfitting likely occurred.

The transliteration model only suggests a constraint for a few words in each of roughly one quarter
of the parallel sentences in our training corpus. The sub-model added a constant for each constraint
violation. We also tried using one minus the confidence scoreas the penalty which did not improve
performance.

The successful integration of a feature of this type shows that our approach is not limited to sub-
models which are similar to those in the generative story butcan in fact be used with any sub-model
which can be scored over a hypothesized alignment of a parallel sentence pair. We believe that improving
the reliability of the confidence score and decreasing overfitting will increase the performance obtained
by adding this sub-model further.

4.8.4 Integrating Supervised Sub-models

The EMD algorithm can also integrate supervised knowledge.We recently obtained a larger hand aligned
alignment set from LDC for Arabic/English. After eliminating possible overlap with our discriminative
training and test sets, there were hand generated alignments for 25,930 new sentences. We decided
to estimate two small supervised sub-models directly from this data and add these sub-models to the
EMD+LEAF system.

We estimated translation tables directly from this data. There were about 230,000 entries in the
translation tables, which are tables containing an Englishword, an Arabic word, and a probability. This
is a low number of parameters. For instance, compare this with the HMM translation tables, where each
table has about 34,000,000 entries, (these tables are features 12 and 27 in the semi-supervised model, see
Table 4.2).

We added the two supervised translation table sub-models toour baseline LEAF+EMD alignment
system. This lead to an increase of 1.8 F-Measure over a system without this supervised knowledge.
This shows that it is possible to easily integrate supervised knowledge into the system.

4.9 Discussion

The literature on semi-supervised learning generally addresses how to augment supervised learning tasks
with unlabeled data. Here we augment an unsupervised learning task with labeled data. This is useful
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in a wide diversity of tasks where we do not have enough unlabeled data for supervised estimation of an
initial model.

We have presented an algorithm applicable in the case that wehave few labels and a generative model
with acceptable performance when trained in an unsupervised fashion. We determine a decomposition
of the generative model into sub-models and then reinterpret these sub-models as being combined into a
log-linear model. We can add additional sub-models which were not in the original generative story, and
we use this to add both backed off forms of the sub-models derived from the original generative story,
and heuristic sub-models which are not directly related to the original generative story.

It is important to note that with this training algorithm we are not taking steps to strictly maximize
likelihood, even though the vast majority of parameters areestimated in the likelihood maximization
framework. Instead we are finding local maxima of likelihoodwhich are better with respect to the final
performance criterion. These are better than other reachable maxima with respect to the final perfor-
mance criterion, but they could possibly be worse with respect to likelihood under the original generative
model.

We have shown that the reinterpretation of our new model as a log-linear model and the derivation
of a semi-supervised training algorithm which can be used totrain it is an excellent way forward to
integrating knowledge sources which could not be captured in the original generative model.

The semi-supervised learning literature generally addresses augmenting supervised learning tasks
with unlabeled data (Seeger, 2000). In contrast, we augmented an unsupervised learning task with labeled
data. We hope that Minimum Error / Maximum Likelihood training using the EMD algorithm can be
used for a wide diversity of tasks where there is not enough labeled data to allow supervised estimation
of an initial model of reasonable quality.

4.10 Summary

We began this chapter by redefining LEAF as a log-linear model. We showed how to discriminatively
rerank N best lists which are taken from this model. We then generalized this to a semi-supervised
training algorithm called “EMD” which implements “MinimumError / Maximum Likelihood” training.
We trained EMD using the original sub-models of LEAF along with more robust backed off sub-models
and heuristically derived sub-models which directly control the trade-off between Precision and Recall.

The EMD algorithm, when coupled with features derived from our LEAF model and trained to
maximize F-Measure, leads to increases between 3 and 9 F-score points in alignment accuracy and 1.2
and 2.8 BLEU points in translation accuracy over strong French/English and Arabic/English baselines.
This strongly validates all three main contributions of thethesis. We additionally performed experiments
showing that we can add sub-models which are very different from those derived from LEAF.

4.11 Research Contribution

We developed an effective semi-supervised training algorithm for automatic word alignment which is
capable of using manually annotated data and of integratingsub-models which are not in our original
generative model.
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Chapter 5

Conclusion

We present the contributions of the thesis, discuss lessonslearned, and then present a section combining
shortcomings and suggested future work.

5.1 Contributions

1. We have found a new method for automatically measuring alignment quality using an unbalanced
F-Measure metric (Fraser & Marcu, 2007b), which has a good correlation with BLEU. We have
experimentally validated that this metric adequately measures alignment quality for the translation
task.

2. We have designed a new statistical model for word alignment, called LEAF (Fraser & Marcu,
2007a), which directly models the word alignment problem without making unreasonable assump-
tions about the structure of the resulting alignments. When LEAF is trained in an unsupervised
fashion using approximate EM, it is comparable with our baseline. Unlike our baseline, unsuper-
vised LEAF does not require the use of heuristics to generatethe final alignment which is used to
build a SMT system. The LEAF model can be decomposed to provide rich sub-models which can
be used in a log-linear model for semi-supervised training.

3. We have developed a semi-supervised training algorithm,the EMD algorithm (Fraser & Marcu,
2006), which automatically takes advantage of whatever quantity of manually annotated data can
be obtained. This algorithm allows for the introduction of new knowledge sources with minimal
effort. We formulated a new log-linear model using the original sub-models of LEAF along with
more robust backed off sub-models and two heuristically derived sub-models which directly con-
trol the important trade-off between Precision and Recall.We applied the EMD algorithm to train
this model using a loss function derived from our unbalancedF-Measure metric. The EMD algo-
rithm, when coupled with sub-models derived from our LEAF model, leads to increases between
3 and 9 F-score points in alignment accuracy and 1.2 and 2.8 BLEU points in translation accuracy
over strong French/English and Arabic/English baselines.

5.2 Lessons Learned

5.2.1 Quality

The most widely used error metric in word alignment, Alignment Error Rate, (AER) (Och & Ney, 2003)
is not correctly derived from F-Measure and should not be used.
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The trade-off between Precision and Recall is very important. We have shown that the setting of the
parameterα, controlling this trade-off, varies with the task.

Using fully connected alignments is important, see Figure 2.1 on Page 13. Without using fully con-
nected components we have unnecessary ambiguity where two alignments which have the same transla-
tional correspondences have different scores according tomost intrinsic metrics of quality.

Extrinsic evaluation is important. Some word alignment research directed towards minimizing AER,
such as research on 1-to-1 alignment models, is not useful for increasing translation performance. This
is an important lesson for Natural Language Processing systems which are not generally extrinsically
validated. An example is statistical parsing where, at least until recently, a higher priority has been
assigned to increasing performance on the Section 23 test set of the Penn Treebank than to ensuring
robust performance in clearly identified tasks. The latter would almost always involve parsing sentences
which are drawn from a distribution which is not well correlated with that of the Penn Treebank, and
gains in the robustness required to do this accurately may not be well correlated with small gains on
Section 23.

5.2.2 Modeling

M-to-N discontiguous alignments allow us to learn the translational correspondences we are interested
in. These are the most general correspondences which can be used by current hierarchical translation
systems such as Hiero (Chiang, 2005) and GHKM (Galley et al.,2006). Even phrase-based (consecutive
word) SMT models can benefit from alignments which do not makethe consecutive word alignment
structure assumption.

The quality of search is an important consideration where weare unable to do tractable inference. It
is important to both directly control search errors and directly control the time taken.

The beam decoding algorithm, widely used in phrase-based decoders, does not work for word align-
ment models with complex structure. Unlike phrase-based decoding, left-to-right hypothesis extension
using a beam decoder is unlikely to be effective because in word alignment reordering is not limited to a
small local window and so the necessary beam would be very large. We are not aware of admissible or
inadmissible search heuristics which have been shown to be effective when used in conjunction with a
search algorithm similar to A* search for a model predictingover a structure like ours.

The problem with the blow-up in parameter space involved in phrase-based models such as the Joint
model (Marcu & Wong, 2002) is partially solved by using the head word structure. In particular, this
appears to be a realistic assumption given the amount of datawe now have, and we also have a straight-
forward path to increase the richness of the sub-models, in response to additional training data, by simply
reducing reliance on word classes and further relaxing conditional independence assumptions. The M-
to-N discontiguous alignment structure using the head wordassumption is also faster to search than a
pure phrase-based structure as the translation dependencies on one side are only dependent on the head
word on the other side (andγ which is a flag indicating whether the cept on the other side contains just
one word). In phrase based approaches translational correspondence is calculated using the full identity
of both cepts. The decomposition of costs using the head wordassumption means that adding a non-
head word to a head word is an operation which incurs additional cost but does not cause all other costs
incurred by that cept to be reevaluated. In phrase-based models any change to a cept causes all costs to
be reevaluated.
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5.2.3 Semi-supervised Training

Combining discriminative training in a loop with steps derived from EM which increase likelihood is an
effective approach to semi-supervised training of models which were traditionally trained in an unsuper-
vised fashion using EM.

Symmetrization heuristics are surprisingly powerful, butare no longer required for LEAF, which
directly models the desired alignment structure. We were initially surprised that the predictions of the
symmetrization heuristics were no longer useful as a sub-model, but in retrospect it makes sense as they
are the product of simple rules which are effectively subsumed in the LEAF model.

Deriving an appropriate training criterion is important. As we showed in Chapter 2 AER is not a
good training criterion, which shows why our initial experiments in discriminative training, (Fraser &
Marcu, 2005), failed to produce an improvement in BLEU.

Backing off the rich features of LEAF is important, particularly for difficult language pairs like
Arabic/English, and combining the original rich feature with a backed off version in a log-linear model
is an effective way of doing this.

Directly tuning the trade-off between Precision and Recallis important when working with F-Measure.
This has an analogue in translation, which is the optimization of the BLEU length penalty (Koehn et al.,
2003), which is required to obtain good performance using BLEU.

Scoring full hypotheses allows for the integration of very rich features scored over the full alignment,
a subject we have only scratched the surface of with the integration of the name transliteration feature.

The search performance dramatically affects the performance of our discriminative algorithm. We
have found that search performance is much more important during the D-step than it is when predicting
Viterbi alignments for the entire training corpus. Fortunately we only have to execute search for the
discriminative development set during discriminative training. For instance, we search for the Viterbi
alignment for only the 1,000 sentences in the development set for the Arabic/English task (the search
is performed once for each iteration of the loop inside of theD-step, see Figure 4.1). Because of this
we can spend a significantly longer time on each sentence pairduring discriminative training than when
we perform the E-step (which requires finding the Viterbi alignment of 6.6 million sentence pairs in the
Arabic/English case).

5.3 Shortcomings and Future Work

5.3.1 Problem Definition: What is a Word?

We have implicitly specified that a word is a space-separatedtoken output by a tokenizer. The tokenizer’s
primary purpose is to separate punctuation from words. The tokenizer additionally performs light deter-
ministic processing of morphological phenomena. For instance, the French tokenizer we use separates
obvious clitics from the words they are attached to (e.g. “n’est” is mapped to “ne est”) and maps mas-
culine and feminine articles to a single token (which is acceptable for translation to English which does
not make this distinction). However this approach is too simple for many language pairs.

The LEAF generative story generalizes well to the case that information in one language is expressed
lexically and not present in an easily accessible fashion inthe other language. For instance, for the
application of Chinese/English machine translation LEAF’s “head-word” concept seems to work well.
An English phrase such as “the man” is often translated as a single Chinese word meaning “man”, while
the definiteness of this word is usually marked by syntactic phenomena which would be difficult to
model. A good LEAF alignment would be a head-word link between English “man” and the Chinese
word for “man”, and then an association from English non-head word “the” to English head word “man”.
Theg distribution in LEAF is capable of modeling that the word “the” has a high probability of being a

67



non-head word, while thew−1 distribution can model that non-head words in the word classwhich “the”
is in have a high probability of being associated with a head word which is one word to the right.

Chinese (and other Asian languages such as Japanese) additionally require word segmentation, which
separates short sequences of Chinese characters into “words” (this is because Chinese is written without
the use of spaces to separate words). Automatic word segmentation is itself an active area of research. A
Chinese word segmenter is typically trained in a supervisedfashion from a gold standard segmentation
specified by human annotators, but it is not been carefully studied whether existing segmentations are
a good choice for machine translation purposes. In fact, it may be possible to create a new generative
story by adding a few steps to the LEAF generative story whichallow the Chinese word segmentation
to be modeled simultaneously with word alignment, rather than handled as a preprocess as is currently
done. This would have the interesting effect of allowing word segmentation choices to be informed by
the English words in the parallel text. Most likely an initial segmentation (or segmentation knowledge
source) would need to be initialized using supervised knowledge, but the segmentation could then be
allowed to vary during the alignment process, and this mightdetermine a final segmentation which is
more useful for translation than existing segmentations.

Unfortunately, the LEAF generative story does not model theinformation systematically present in
“pieces” of words (e.g. morphological phenomena, including particularly clitics). Such generalization
would require a source of morphological knowledge. For instance, consider again English “the man”,
but this time consider how it should be aligned with Arabic. English “the man” might be aligned with the
single Arabic token “al-rajul”, where the prefix “al-” is “the”, and “rajul” means “man”. Here again the
g distribution in LEAF is capable of modeling that words like “the” have a high probability of being non-
head words; again, thew−1 distribution can model that non-head words in the word classof “the” are
often associated with head words one word to the right. But LEAF can not learn that the “al-” in this case
indicates that it is more likely that “the” should be in the English cept aligned with “al-rajul”. Modeling
this in a language independent fashion would be difficult. Ittycheriah and Roukos (2005) defined sub-
models which model this type of information for the Arabic/English word pair case and showed that this
is effective. We could similarly define language pair specific sub-models to do this. However, we would
be more interested in finding a general framework to solve this problem. Such a framework would ideally
be language independent, but might require supervised training data (in the same way that integrating
Chinese segmentation might require access to a supervised knowledge source, as we already discussed).
We would be interested in developing a language independentextension of the LEAF generative story
which is able to consider phenomena like the “al-” in “al-rajul” (and possibly align such morphemes
separately), but we recognize that this is both conceptually and computationally difficult without access
to very highly accurate sources of morphological knowledge.

5.3.2 Quality

One shortcoming of our work on quality metrics is that we haveprovided a metric with a tunable param-
eter. This necessitates experimentation to determine how to evaluate with each new task. We would be
interested in understanding the dependency of theα parameter more fully. For instance, we could study
whether there is something about the language pairs involved, the quality and style of the gold standard
annotation, or even the quantity of training data which helps to explain why a particularα setting works
best.

Ideally we would like to derive a metric which does not have a tunable parameter but has the same
performance as unbalanced F-Measure does whenα is appropriately tuned. CPER (Ayan & Dorr, 2006a)
is an interesting step in this direction. CPER calculates balanced F-Measure over the phrase pairs ex-
tracted from a hypothesized alignment (these are the same phrase pairs as are extracted for use in the
translation model of a phrase-based MT system), comparing them with the phrase pairs extracted from a
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gold standard alignment. Unfortunately, CPER has not been shown to predict MT performance. It seems
likely to us that there should be a trade-off between Precision and Recall in comparing phrases extracted
as well, but possibly this trade-off will be less important than in the case of word links. We would be
satisfied if we were able to use a singleα parameter in conjunction with a CPER-like metric ifα were
constant for all of our tasks.

Another shortcoming of our work is that we only tested the BLEU metric. The BLEU metric shows
that is likely that our noise and oracle models, used for artificially degrading and improving alignments,
produce regular changes in the quality of machine translation systems built from these alignments, but we
could obtain even stronger evidence. Ideally we would like to use human annotators to judge the output
of MT systems built using the alignments, but this would be prohibitively expensive and is probably not
necessary in this case. Instead, METEOR (Banerjee & Lavie, 2005) is a promising automatic metric
which we would be interested in trying as it has been shown to have better correlation with human
judgments than BLEU.

Our work on quality is dependent on measuring the quality of asingle predicted alignment, such as
the Viterbi alignment of the LEAF model. However, there are approaches to building MT systems which
are trying to utilize the full distribution over alignmentsrather than the most likely single alignment. As
this body of work matures, we would be interested in derivinga quality criterion for a distribution over
alignments which is finer grained than simply taking the mostlikely prediction and scoring it. This new
quality criterion should allow us to evaluate the quality ofthe entire distribution.

5.3.3 Modeling

One large disadvantage of the LEAF model is the intractability of exact search. Model 4 has the same
problem. We need to solve search problems during both parameter estimation and prediction of the final
Viterbi alignment. As we have discussed previously, existing models with tractable exact search make
unrealistic assumptions about alignment structure which do not model the word alignment problem with
sufficient fidelity. We have defined a local search algorithm which results in good F-Measure scores,
by taking steps to apply some of the knowledge gained by the research community in solving problems
such as the Traveling Salesman Problem in our implementation of a restarting “Tabu” search (Glover,
1986). However, our current implementation is very slow (see Appendix C.1 for detailed timings and a
discussion of how to program a faster implementation). We are also hopeful that we could use a dynamic
programming approach which would consider many more alignments (see Appendix C.2).

Another disadvantage of the LEAF model is the Viterbi approximation used to carry out the M-
step. In previous experiments using GIZA++ we have found that using the Viterbi assumption is usually
not worse than using the “neighborhood” assumption, which involves calculating the probabilities of
alignments which are one search operation away from the Viterbi alignment. However, there is reason to
believe that this might not be the best we could do. In our workwith LEAF we have significantly reduced
search errors, which means that the alignments we find are of higher quality. It is likely that the N best
lists we generate are a better approximation of the search space than the neighborhood of the Viterbi used
by GIZA++. In the short term, it would be interesting to try estimating LEAF using a normalized N best
list of a large size similar to those generated during the D-step (but in this case calculated over the entire
training corpus). In the longer term, it would be interesting to estimate LEAF by solving the alignment
problem such that very large N best lists or an alternative efficient representation of many hypotheses
can be used.

One aspect of the LEAF model we have not fully investigated isthe use of word classes. We use
source word classes derived using a greedy maximization of the probability of the monolingual source
corpus (Och, 1999), and follow the same procedure to derive word classes for the monolingual target
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corpus. These are the same word classes as are used in our baseline. We would be interesting in con-
ducting a study to see if better word classes, for instance derived from Part-of-Speech tags, might help
the performance of LEAF.

5.3.4 Semi-supervised Training

Our approach to semi-supervised training, Minimum Error / Maximum Likelihood training using the
EMD algorithm, has been shown to work well, but it could be further improved. We would be interested
in conducting studies to determine the point at which the current algorithm begins to overfit the discrim-
inative training set. It would also be helpful to determine at which point adding additional sub-models
begins to tax the current optimization’s ability to find a local maxima reasonably close to the global
maxima.

A closely related problem is the problem of feature selection. In our current implementation sev-
eral of the features receive very low scores and sometimes the 1 best choice (taken by rescoring the final
hypothesis list from the D-step) is not changed by removing these features. A principled approach to fea-
ture selection would mark these features as ineffective earlier in the process and this might systematically
result in convergence to better solutions for the discriminative training problem.

One obvious area of improvement for our semi-supervised alignment model is to use language spe-
cific sub-models as we already mentioned. In particular, interesting work has been done for morphology
in connection with word alignment. Corston-Oliver and Gamon (2004) describes an approach for nor-
malizing the inflectional morphology of German and English to gain an improvement in alignment qual-
ity measured by AER. We documented a simple approximative stemming algorithm, (Fraser & Marcu,
2005), which was used to gain an improvement in AER. Niessen and Ney (2004) provides an interest-
ing approach to integrating morphology in word alignment byinterpolating lemma and inflected word
probabilities in a principled fashion. The IBM research group has used Model 1 training combined
with sophisticated morphological segmentation of Arabic to train Arabic/English word alignments (Lee,
2004), and more recently defined a discriminative word alignment model specifically for Arabic inte-
grating morphological components (Ittycheriah & Roukos, 2005). These works and several others point
to the possibility of integrating morphological modeling with word alignment. One could integrate fea-
tures either just into the word alignment model, or possiblyinto both the word alignment model and the
translation model in a coordinated fashion.

We are also interested in the integration of more powerful sub-models which can be drawn from other
areas covered in the natural language processing literature. We suggest three examples here. Drabek
and Yarowsky (2004) showed that syntactic rules can be used to reorder the corpus so as to decrease
problems in aligning syntactic clause level phenomena, andCollins et al. (2005) has generalized this
approach further. Our model is likely to benefit from the use of dependency parses to help determine
likely head word relationships in a manner similar to work reported by Cherry and Lin (2003), but
instead implemented as a sub-model added to semi-supervised LEAF. Work on determining multi-word
units, which is often done using unsupervised models, may provide interesting features for helping to
inform which words might be grouped together as a translational unit, though this decision is ultimately
a bilingual decision which will be made differently for different language pairs (e.g. the English words
grouped together would differ for the English/Arabic and English/German cases). Work of this type can
be easily integrated into our framework as we always score complete hypotheses, and so no limitations
requiring the decomposing of features over small pieces of the alignment are necessary.

Finally, we would like to apply the EMD algorithm to problemsoutside of word alignment. There is
a tremendous interest in algorithms which work well with very small quantities of labeled data and larger
quantities of unlabeled data. EMD solves this problem, but in its current formulation is tied to the word
alignment problem. We would be interested in providing a more general formulation of EMD. Another
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application of EMD, perhaps outside of the area of natural language processing, is an opportunity we
would be very interested in pursuing.

5.3.5 Using Word Alignment

We would be interested in applying the EMD algorithm in conjunction with LEAF to generate align-
ments for applications other than MT. Two obvious applications which come to mind are Cross-Lingual
Information Retrieval (CLIR) (Hiemstra & de Jong, 1999; Xu et al., 2001; Fraser et al., 2002) and para-
phrasing (Pang et al., 2003; Quirk et al., 2004; Bannard & Callison-Burch, 2005). It would be interesting
to see if the F-Measure criterion derived for translation tasks is useful for these tasks as well. Our in-
tuition tells us it that it should be, but this must be empirically verified. We would need to calculate an
appropriateα for each task. As an example, we were interested to observe that in work by Riezler et al.
(2007) the authors reported that they needed to manually increase the number of NULL alignments on
one side of a specialized corpus they were aligning for use inquery expansion. We expect that these
sort of trade-offs could be handled automatically in our framework by providing a small number of gold
standard word alignments and appropriately adjustingα. It would also be very interesting to try using
alignments generated following our approach to build resources for CLIR and paraphrasing, and these
applications might provide another source of extrinsic validation for our work.

We also envision modifying LEAF’s generative story to better model other applications. For instance,
LEAF could be modified to directly model the problem of summarization, in a fashion similar to work
by Dauḿe III and Marcu (2005). This requires a generative story which allows large amounts of deletion
in aligning the document to the summary. A similar problem isthe modeling of the generation of closed
captions for television.

The present best practice of extracting translation rules (or phrase pairs in a phrase-based SMT sys-
tem) from a single alignment (such as the LEAF Viterbi alignment) is well established. But as we
discussed in Section 3.6.7 research has begun into estimating the translation model from a distribution
over alignments. A first approximation of this approach might be to estimate rules from the N best lists
we can currently generate, weighted by the posterior probability of the alignment. We might also want to
“second-guess” the extraction of phrase-pairs from the final LEAF Viterbi alignment in a fashion similar
to the work of Deng and Byrne (2005). Given a new test set, theyused their alignment model to try
to determine probable translations for phrases which occurred in the training data but were aligned in
such a way that extracting a translation rule was impossible. This revisiting of the alignment given a test
set is a form of inexpensive transductive learning. As work in the area of estimating from more gen-
eral output distributions than the Viterbi alignment progresses, we envision the modification of LEAF
to output a distribution over alignments which assigns non-zero probabilities to a large portion of the
probable alignments. This will necessitate the modification of translation systems to estimate rules from
this distribution.

A closely related advance would be to refine LEAF itself into atranslation model. The success of
the Hiero hierarchical translation model (Chiang, 2005) suggests that this would be possible. However
this would be an ambitious research program as we would need to create a decoder integrating language
modeling capability, and most likely we would have to createa very different search algorithm. We
would also need to add new sub-models to the model to score translations. In particular it would be
important to allow the model to memorize more of the context than is necessary in word alignment. A
less ambitious project which could be used as a stepping stone towards this final goal would be to score
the LEAF alignment model as a feature in a hierarchical decoder in a similar fashion to the “lexical
smoothing” (scoring of the alignment links used to generatetranslation rules) already implemented in
Hiero, or even as “lexical smoothing” in a phrase-based decoder (particularly if it were a more general
phrase-based decoder which supported gaps in the phrases).
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Appendix A

IBM Model 4

A.1 Introduction

The definitive work on early generative models of word alignment for machine translation is by Brown
et al. (1993), which describes a group of models called the IBM Models. We focus on IBM Model 4 in
particular. An overview of other generative models for wordalignment is given in Section 3.6.

A.2 The IBM Models

Brown et al. (1993) developed five statistical models of translation (IBM Models 1 through 5) and
parameter estimation techniques for them. The models were designed to be used in a pipeline, where
each model is bootstrapped from the previous model.

For ease of exposition, the source language for the translation task is referred to as “French”, and the
target language is referred to as “English”, although thesecan be any language pairs in practice. The
translation problem is defined as given a French stringf , find the English strinĝe according to Equation
A.1.

ê = argmax
e

Pr(e|f) = argmax
e

Pr(e) ∗ Pr(f |e) (A.1)

wheree represents any potential English string made up of English words.Pr(e) represents the true
distribution over English strings.Pr(f |e) represents the true distribution over French strings generated
from English strings.

ConsiderPθ(f |e) to be a model ofPr(f |e). If we introduce a hidden variablea representing word
alignments, we can sum over these variables, see Equation A.2.

Pθ(f |e) =
∑

a

Pθ(f, a|e) (A.2)

For our task, which is word alignment annotation, we have fixed stringsf ande, and we wish to
select the best alignment according to the model,â, which we do in Equation A.3.

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (A.3)

The only alignments in the IBM models which can have non-zeroprobability involve links from one
English word to zero or more French words. We call alignmentswhich can have non-zero probability
within a model “feasible” in that model. Not all French wordsmust be aligned with an English word
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Figure A.1: French/English example, gold standard (solid lines) and best possible Model 4 decisions
(dashed lines)

which appears in the sentence; those that aren’t are considered to be spontaneously generated. For
reasons of notational convenience we consider them to be aligned to a so-called NULL word which we
will denotee0.

A.2.1 Introduction to Model 4

We concentrate on Model 4, presenting the generative story,the mathematical formulation, and the un-
supervised training algorithm for the model using a variantof the Expectation Maximization (EM) al-
gorithm. We also outline how Model 4 is used in practice, including the heuristic steps applied to the
alignments predicted by the model in order to produce a final word alignment.

Brown et al. (1993) defined a model ofPr(f |e) called Model 4. IBM Model 4 is a generative model,
which is a model of how a French stringf is generated given an English stringe. The steps followed
determine a unique alignmenta.

To generatef from e (using steps which determinea), the following generative story is used. We
first pick for each English word a fertility value, which is the number of French words which will be
generated from it. Then we choose a fertility value for the NULL English word conditioned on the total
number of French words generated from the non-NULL English words. For each English word including
the NULL word we pick the identity of the French words that aregenerated from it. Finally, we choose
the position of each French word in the French sentence.

A.2.2 Example of Model 4 Generative Story

We start with an English sentence. We will use a shorter sentence similar to our example from the
introduction which is shown in Figure A.1. The gold standarddecisions are the solid lines, while the
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best alignment which is feasible in Model 4 is indicated withdashed lines. Here are the Fertility and
Translation decisions which we would like the model to make for our example:

• “They” is Fertility 1. It generates French “ils”.

• “do” is Fertility 0.

• “not” is Fertility 2. It generates French “ne” and French “pas”.

• “want” is Fertility 1. It generates French “désirent”.

• “to” is Fertility 0.

• “spend” is Fertility 1. It generates French “dépenser”.

• “that” is Fertility 1. It generates French “cet”.

• “money” is Fertility 1. It generates French “argent”.

• The English period is Fertility 1. It generates the French period.

• The English NULL word does not generate any spurious French words.

Because of the 1 to many assumption, we can not draw links fromboth English “do” and “not” to
French: “ne” and “pas”. We also can not draw links from both “to” and “spend” to “d́epenser”. This is
a serious problem. We present a new model called LEAF in Chapter 3 which overcomes the 1-to-many
assumption.

A.2.3 Model 4 Generative Story

We present the full Model 4 generative story, following the exposition of Brown et al. (1993) very
closely. We do make one assumption differently from Brown etal. (1993), which is that the placement
position is only dependent on the previous placement position (in IBM Model 4 there is an additional
conditioning on automatically derived word classes, but weomit this to simplify the presentation). Note
that there is a non-zero probability of “failure”, i.e. there is a non-zero probability that the generative
story fails to generate anything. This means the model is deficient, wasting some probability mass.

The variablel refers to the length of the English sentencee, andm refers to the length of the generated
French sentencef . φi is the number of French words generated by the English word atposition i. The
identity of these words isτik (k ranges from 1 toφi), and their French position isπik. The termρi refers
to the previous English word to the English word at positioni which has fertility greater than zero.cρi

is
the “center” of the words placed by the previous English wordof non-zero fertility to the English word
at position i. The calculation ofcz for a non-zero-fertility English word at position z is described in
equation A.4, below.

The Model 4 generative story:

1. For eachi = 1, 2, ..., l choose a fertility valueφi according to the distributionn(φi|ei).

2. Choose a fertility valueφ0 according to the distributionn0(φ0|
∑l
i=1 φi).

3. Let m =φ0 +
∑l
i=1 φi

4. For eachi = 0, 1, ..., l and eachk = 1, 2, ..., φi, choose a French wordτik according to the
distributiont(τik|ei).
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5. For eachi = 1, ..., l and eachk = 1, 2, ..., φi, choose a positionπik as follows:

• If k = 1, chooseπi1 according to the distributiond1(πi1 − cρi)

• If k > 1, chooseπik according to the distributiond>1(πik − πik−1) subject to the constraint
thatπik−1 < πik

6. If any position has been chosen more than once, return “failure”

7. For eachk = 1, 2, ..., φ0 choose a positionπ0k from φ0 − k + 1 remaining vacant positions in
1, 2, ...,m according to the uniform distribution.

8. Letf be the string withfπik = τik

The calculation of the “center” of the French words generated from a non-zero fertility English word
at positioni in the English sentence is shown in Equation A.4.

ci = ceiling(
φi
∑

k=1

πik/φi) (A.4)

We call French words generated from English words (not including the special English NULL word)
“non-spurious”, as their generation is explained by the English words we observe. The number of non-
spurious words ism′, which is the sum of the fertilities of the non-null English words, as shown in
Equation A.5.

m′ =

l
∑

i=1

φi (A.5)

For notational reasons we annotate unexplained French words as being generated from the English
NULL word, but this does not directly reflect the generative process. These French words are called
“spurious”, as they aren’t being generated by the English words we observe. In the generative story, these
words are generated as a part of the process of generating non-spurious French words. The parameter
p1 represents the probability that as we generate a non-spurious French word we also generate a single
spurious French word, whilep0 is the probability that as we generate a non-spurious Frenchword we
don’t generate any spurious French word (p0 + p1 = 1). The number of spurious words generated is
modeled using a binomial distribution where the number of trials ism′ and the chance of trial success
(generating a spurious word) isp1 (the chance of trial failure is1 − p1 = p0). The equation is given in
Equation A.6.

n0(φ0|m
′) =

(

m′

φ0

)

pm
′−φ0

0 pφ0

1 (A.6)

The decisions made in a particular generative story can be mapped to a unique alignmenta. When
working with 1 to many alignments, a compact representationof an alignment which is sometimes used
is a vector of lengthm (the length of the French sentence), which indicates for each French wordfj the
position of the English word which generated it (i.e., the values in the vector range from0, .., l). The
reader can verify that given the particular generative story outlined for our example (with the addition
of distortion operations to specify the placement of the words) we generate the unique French string and
unique alignment shown in A.1. Under the Model 4 generative story, given a starting English stringe
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and the decisions made (which did not result in “failure”), we generate a unique French stringf and a
unique alignmenta, and this is always the case1.

A.2.4 Model 4 Mathematical Formulation

Given an English stringe, a French stringf and a candidate alignmenta, we would like to look up
p(f, a|e). The formula for Model 4 is in Equation A.7. See Equation A.8 for the expansion of the
simplified distortion calculation which we abbreviateDik(j).

[

l
∏

i=1

n(φi|ei)

]

n0(φ0|

l
∑

i=1

φi)

l
∏

i=0

φi
∏

k=1

t(τik|ei)

l
∏

i=1

φi
∏

k=1

Dik(πik) (A.7)

Dik(j) =

{

d1(j − cρi
) if k = 1

d>1(j − πik−1) if k > 1
(A.8)

A.2.5 Training Model 4 Using Expectation-Maximization

A.2.5.1 Introduction

In this section we present the training of Model 4 using the Expectation-Maximization (EM) algorithm.
EM is an algorithm for finding parameter settings of a model which maximize the expected likelihood
of the observed and the unobserved data (this is called the complete data likelihood; the incomplete data
likelihood is the likelihood of only the observed data). Intuitively, in statistical word alignment, the E-
step corresponds to calculating the probability of all alignments according to the current model estimate,
and the M-step is the creation of a new model estimate given a probability distribution over alignments
(which was calculated in the E-step).

Model 4 is a generative model with carefully controlled complexity. In Model 4, given stringse
andf , every particular generative story which explains howf was generated frome representsl + 2m
decisions. There arel fertility decisions over the English string and there is a generation decision and
a placement decision for each of them French words. It is important in EM to control complexity. If
complexity is not carefully controlled, there can be a bias towards simpler structure, by which we mean
solutions where less decisions are made. If this is the case then heuristics must be used to compensate.
It is difficult to craft an effective generative model of wordalignment which has a constant number of
decisions for use with EM.

A.2.5.2 E-step

In the E-step we would ideally like to enumerate all possiblealignments and label them withp(f, a|e).
However, this is not possible when using an alignment model as complex as Model 4. As we will see
below in the discussion of the M-step, we would at least like to find the most likely alignment given the
model. This is referred to as the Viterbi alignment,â in this formula:

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (A.9)

1The inverse is not generally true; given an English stringe, a French stringf , and an alignmenta,
there is not only one particular generative story that wouldhave generatedf anda from e unlessφ0 = 0
(such as in our example).
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This is a repeat of equation A.3 which represents the task of finding an approximate Viterbi alignment
to output as the final alignment output from the alignment process. Here, in Equation A.9 we are referring
to the search for an alignment during training. We can vary this to be, for instance, the search for the 10
most probable alignments (where a probability distribution over the 10 alignments would be used for the
M-step).

The calculation of the Viterbi alignment for IBM Model 4 was proven to be NP-hard by Udupa and
Maji (2006). So we take the most probable alignment we can find, and assume it is the Viterbi alignment.

A local hillclimbing search algorithm is used (Brown et al.,1993). The search starts from the pre-
sumed Viterbi alignment found during the previous iteration of training. Brown et al. (1993) recommends
instead starting the search from the Viterbi alignment of IBM Model 2, but we do not believe this is more
effective. All alignments which are reachable by two searchoperations from the current best alignment
are considered. One search operation is to change the generation decision for a French word to a different
English word, and the other search operation is to swap the generation decision for two French words.
The two search operations are applied exhaustively, and thebest resulting alignment is chosen; this is
iterated. The search is terminated when no improved alignment can be found.

A.2.5.3 M-step

For the M-step, we would like to take a sum over all possible alignments for each sentence pair, weighted
by p(a|e, f) which we calculated in the E-step (note that the labels labeled in the E-step must be renor-
malized to sum to 1 for eache, f pair, as they are estimates ofp(f, a|e), and we would like estimates of
p(a|e, f)). As we mentioned, this is not tractable.

We make the assumption that the single assumed Viterbi can beused to update our estimate in the
M-step (which we callpM (a|e, f), the probability of the alignment given the sentencee and the sentence
f ):

pM (a|e, f) =

{

1 if a = â
0 if a 6= â

(A.10)

Note that when discussing “Viterbi training”, we are abusing the term “Viterbi alignment” to mean
the best alignment according to the model that we can find, notthe best alignment according to the model
that exists.

We estimate new parameters from the assumed Viterbi alignments found during the E-step by simply
counting events in the assumed Viterbi alignments, since they are assumed in equation A.10 to be the
only alignments of non-zero probability. We collect the counts listed in Figure A.2. After collecting the
counts, for each condition, we normalize these counts so that they sum to one, which provides us with
the model estimate for the next E-step, listed in the following equations:

t(f̄ |ē) = ct(f̄ |ē)/
∑

f̄ ′

ct(f̄ ′|ē) (A.11)

n(φ̄|ē) = cn(φ̄|ē)/
∑

φ̄′

cn(φ̄′|ē) (A.12)

d1(△j) = cd1(△j)/
∑

△j′

cd1(△j
′) (A.13)

d>1(△j) = cd>1(△j)/
∑

△j′

cd>1(△j
′) (A.14)
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ct(f̄ |ē) translation counts,̄f is a French word and̄e is an English word
cn(φ̄|ē) fertility counts,φ̄ is the number of words generated by the English wordē
cd1(△j) distortion (movement) counts of the first French word translated from a single English

word (looking from left to right in French sentence)
cd>1(△j) distortion (movement) counts of other French words translated from a single English

word

Figure A.2: Counts collected in unsupervised Model 4 training

Clearly the Viterbi training approximation is related to EMtraining, which tries to maximize the
complete data log likelihood. Neal and Hinton (1998) analyzed approximate EM training and motivates
this general variant. We would like to eventually try using aprobability estimate over a larger set of
hypothesized alignments to reestimate the model, but finding a set to use which will help the performance
of the estimated models is an open research problem.

A.2.6 How Model 4 is Used in Practice

A.2.6.1 Open Parameters Used with Model 4

In practice,p0 is not usually trained using likelihood (see (Brown et al., 1993) for details of count
collection). Insteadp0 is set to a fixed value which produces good quality alignments.

The GIZA++ Model 4 implementation used in our experiments has two smoothing parameters to
smooth the fertility distribution which are not part of the original Model 4 formulation.

We set these three open parameters based on final translationquality, in an expensive grid-search
process which involves building a full SMT system for each parameter setting we would like to try. In
our work on semi-supervised training presented in Chapter 4we overcome this difficulty and show how
to efficiently train such parameters using a small amount of hand annotated word alignment data.

A.2.6.2 Heuristic Symmetrization for the IBM Models

All of the IBM Models assign zero probability to alignments in which more than one English word is
aligned to a single French word. This is a poor assumption. Ideally, we would like a model to be able
to assign non-zero probabilities to all of the possible alignments, which includes alignments that violate
the one to many assumption.

In practice, in current state of the art machine translationsystems, heuristic techniques are used
to obtain M-to-N discontinuous alignments. For 1-to-N models like the IBM Models, the following
approach is used:

• We are supplied with a bitext to be aligned, a 1-to-N alignment system, and a symmetrization
heuristic.

• Generate the predicted 1 to many alignment in the direction English to French. In this alignment
one English word aligns to zero or more French words. Call theresulting alignment A1.

• Generate the predicted 1 to many alignment in the direction French to English. In this alignment
one French word aligns to zero or more English words. Call theresulting alignment A2.
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• Combine A1 and A2 into a many to many alignment using a symmetrization heuristic. Call this
many to many discontinuous alignment A3

• Return A3

We briefly discuss the three symmetrization heuristics defined by Och and Ney (2003). For discussion
of other heuristics the reader is referred to Koehn et al. (2003).

• The “Union” symmetrization heuristic involves taking the union of the links in the A1 and A2
alignments. This results in an alignment having M-to-N discontinuous structure.

• The “Intersection” symmetrization heuristic involves taking the intersection of the links in the A1
and A2 alignments. This will result in a 1-to-1 alignment structure.

• The “Refined” symmetrization heuristic starts from the “Intersection” 1-to-1 alignment, and adds
some of the links present in the “Union” M-to-N discontinuous alignment following the algorithm
defined by Och and Ney (2003). This results in an alignment containing 1-to-N and M-to-1 cor-
respondences, but importantly the words in the minimal translational correspondences must be
consecutive, so this is not as general as the “Union” heuristic. This heuristic is described in further
detail in Section 2.2.3.

Use of these heuristics is undesirable. We would ideally usea model which is able to assign non-zero
probability to many to many discontinuous alignments directly, without requiring the use of heuristics.
We present the LEAF model in Chapter 3 which is able to do this.

A.2.7 Discussion

We have presented the important issues behind the work of Brown et al. (1993). We have shown how
Model 4 works in detail, and have discussed the structural assumptions that were used in all of the IBM
models. In addition, we have discussed how Model 4 is used in practice. We hope that the reader now
has an understanding of the previous state of the art unsupervised solution for word alignment and some
idea of its strengths and weaknesses.

For the baselines in this thesis, we directly compare results with the freely available GIZA++ software
package, which is used to generate the alignments for many MTsystems.

However, we have also reimplemented the Model 4 alignment model. We have implemented our
code so that we can calculate presumed Viterbi alignments for Model 4 on many servers using a small
memory footprint, which is a large advantage over GIZA++ which has a large memory footprint and can
only use one server.
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Appendix B

Details of Introductory Experiments

B.1 Building Translation Systems with Word Alignments

SMT systems are usually broken down into two types of model, the translation model, which is a model
of translational correspondence between the source and target languages, and the language model, which
is a model of well-formed sentences in the target language.

The translation model is estimated using a bitext of parallel source language sentences and target
language sentences and an alignment of that bitext. The model estimated from the bitext is called the
translation model because it models the mapping of a source phrase to a target phrase. The language
model is estimated only from the target language text, this is a model of well-formed target language
sentences. We can use additional target language text whichis not from the bitext to help us build a
better language model.

In the experiments presented in this section, we use the ISI implementation of the alignment tem-
plates system (Och & Ney, 2004), which is a phrase-based SMT translation system (Koehn et al., 2003).
This is a log-linear translation model (Och & Ney, 2002). Thelog-linear model is trained to maximize
an automatic translation quality metric called BLEU (Papineni et al., 2001). BLEU is an automatic eval-
uation metric which measures translation quality. BLEU hasbeen shown to correlate well with human
judgments of quality. To maximize BLEU we use the Maximum BLEU training algorithm (Och, 2003).
This algorithm uses the translation “dev” set as training data to train the weights of the log linear model
so as to maximize BLEU.

In phrase-based SMT, we estimate the phrase lexicon (the most important part of the translation
model) using a word alignment of the training bitext. We willvary how we construct this word alignment.
This is the only factor varied in all experiments in this thesis1. We will always compare two or more
systems using the same language models and the same bitext, but the two alignments of the bitext will
be different.

For all of our experiments, we use a language model built on the target language training data and a
large language model built on news data.

We evaluate an alignment by building a machine translation system, translating a machine translation
test set and evaluating it using BLEU. For ease of reading we multiply the BLEU score by 100, and for
this reason we report “BLEU %” in our results.

We present our own word alignment systems in Chapters 3 and 4.In this section we present results
based on our baseline, a widely used unsupervised alignmentprocedure, which is used as the baseline in

1Note that because we only allow the final alignment to vary, features based on IBM Model 1 (a lower
order alignment model) are also held constant.
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most papers on word alignment. This approach uses a freely available software package called GIZA++
(Och & Ney, 2003), which implements several alignment models. GIZA++ implements both the IBM
Models (Brown et al., 1993) and the HMM word alignment model (Vogel et al., 1996). In our baseline,
we use heuristic post-processing of the output of GIZA++, asis standardly done.

GIZA++ implements both Model 4 and the HMM using a few extensions which were not in the
original formulations. We use IBM Model 1, the Aachen HMM, and IBM Model 4 in that order (these
models “bootstrap” from one another, see Appendix A for moredetails). The output of these models is an
alignment of the bitext which projects one language to another. GIZA++ is run end-to-end twice. In one
case we project the source language to the target language, and in the other we project the target language
to the source language. The output of GIZA++ is then post-processed using so-called “symmetrization
heuristics” to produce a single alignment by combining the source to target alignment and the target to
source word alignment output by the models. We describe Model 4 and the heuristic symmetrization
algorithms in more detail in Appendix A.

B.2 Experimental Details for the Romanian/English Weak Oracle
Experiment

We would like to substantiate the claim that improved alignments will lead to improved MT systems. We
show that there exist alignments of a fixed bitext which are significantly better for translation than the
alignments generated by our baseline system. We generate the improved alignments by using an “ora-
cle”, a system which (in an unfair fashion) tells our alignment system how to improve the alignments. We
measure phrase-based statistical machine translation performance both when using our baseline align-
ment system, and using the “oracle”. We show that alignmentscan be improved by showing that the
“oracle” alignments lead to higher performance than the baseline.

Experiment overview: We report on a “weak oracle” experiment. We select a trainingbitext (par-
allel sentences in Romanian and English) to be aligned underthree different experimental conditions.
For the baseline, we use the current state of the art alignment system to align the training bitext and then
build a machine translation system and translate a held out test set. The second experimental condition
is to show that our reimplementation of the baseline has identical performance (this is only necessary
because we need to use our reimplementation for the weak oracle). For the “weak oracle”, we allow
the word alignment system access to gold standard alignments of the test data to force it to make better
alignment decisions on the training bitext. The differencewith the baseline is that a “weak oracle” told
the alignment system how to align the training bitext well (for this test set). We show that the translations
of the test data generated by an MT system using this alignment is of higher quality than the translation
which was generated by the baseline system. This shows the existence of better alignments than those
generated by our baseline system.

Experiment details: We build SMT systems for three distinct experimental conditions which we list
below. See Table B.1 for statistics of the data.

We use the training data originally supplied for the WPT05 shared task (Martin et al., 2005) on word
alignment. For the machine translation “dev” set, which is used for Maximum BLEU training, we use
the WPT05 alignment test set, and for the machine translation“test” set, we use the WPT03 alignment
test set.

The first system, “Symmetrized GIZA++”, is the result of running 5 iterations of running GIZA++
IBM Model 1, 5 iterations of GIZA++ HMM Model, and 4 iterations of GIZA++ Model 4 where one
alignment was generated in the Romanian to English direction and one alignment was generated in the
English to Romanian direction. The second system, “Symmetrized Model 4”, is the result of boot-
strapping our implementation of Model 4 using the GIZA++ HMMModel outputs, running 4 iterations
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of Model 4 in both directions using our implementation and isotherwise identical to “Symmetrized
GIZA++”.

The first system, “Symmetrized GIZA++”, is the result of running GIZA++ Model 4 and post-
processing the output with heuristics. “Symmetrized Model4” is our implementation of Model 4, also
post-processed with the same heuristics. The third system,“Weak Oracle” is generated by concatenating
the training data together with 1000 copies of the manually annotated gold standard word alignments for
both the machine translation “dev” set and the machine translation “test” set each time parameters are
estimated for use in our implementation of Model 4. These gold standard alignments are removed before
the alignments are used to build the machine translation system. The effect these gold standard align-
ments have on the machine translation system is indirect; they force the decisions made in the alignment
of the training data to be good decisions for the translationof the development and test sets (which is
why this is an oracle experiment).

Using gold standard word alignments for a fraction of the parallel sentences in our augmented train-
ing+dev+test corpus is easy to do in our reimplementation ofModel 4 but not implemented in GIZA++,
which is why we use our implementation to implement the “WeakOracle”. A preliminary comparison
is necessary to show that our alignment package is equivalent in performance to GIZA++. The BLEU
scores in line 1 (GIZA++) and line 2 (our implementation) of Table B.2 show that our implementation
has equivalent performance.

The main comparison directly addresses the existence of better alignments. We compare “Sym-
metrized Model 4” (line 2 of Table B.2) with “Weak Oracle” (line 3 of Table B.2). The “Weak Oracle”
is 3.30 BLEU points better than “Symmetrized Model 4”. This shows the existence of alignments which
give us better translation performance than the best we can obtain with our baseline.

Note that this is only a weak oracle experiment because it is possible to find even better alignments.
For instance, if a word is translated as two words in the gold standard in one context, it will translate
as two words in every context. This will damage the quality ofother alignments of that word in other
contexts which could affect translation decisions and adversely affect translation quality. In addition, the
oracle is weak because it is constrained to the alignment structure which is modeled by the IBM Models
which is not the correct alignment structure (see Section 1.2.4). If we were given infinite resources
to search all alignments exhaustively by evaluating them ina translation system directly, it would be
possible to find better alignments with even larger BLEU improvements (which would be a strong oracle).

Experiment Results Summary: Table B.2 shows that the current state of the art (line 1) and our
reimplementation (line 2) have the same performance. Line 2is the baseline for the main experiment,
the BLEU score is 23.06. Line 3 shows the existence of alignments which give us better translation
performance than the best we can currently obtain with our baseline. These improved alignments result
in a BLEU score of 26.36; this is 3.30 points better than the baseline which is a large improvement. This
experiment is evidence that MT quality can be improved by producing improved word alignments. We
will show how to obtain such improved word alignments (without using an oracle) in the main part of
the dissertation.
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Table B.1: Romanian/English Weak Oracle Data

ROMANIAN ENGLISH

TRAINING

SENTENCES 48222
WORDS 971525 1024321
VOCABULARY 45782 25507
SINGLETONS 19328 8567

TRANSLATION DEV
SENTENCES 200
WORDS 4365 4562

TRANSLATION TEST
SENTENCES 248
WORDS 5495 5639

Table B.2: Romanian/English Weak Oracle Results

SYSTEM BLEU %
SYMMETRIZED GIZA++ 22.85
SYMMETRIZED MODEL 4 23.06
WEAK ORACLE 26.36
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Appendix C

Search Implementation Details

C.1 Comparing the Current LEAF Search Implementation with
Model 4

Our current implementation of the LEAF search (used in both the D-step and the E-step) is unoptimized.
We compare it with an unoptimized version of Model 4 (our implementation) and a highly optimized
implementation of Model 4 (GIZA++, Och and Ney (2003)). We will discuss how the search for the
LEAF Viterbi alignment can be improved (using the same techniques implemented in GIZA++) to be
about 12 times slower than the time required by the GIZA++ Model 4 implementation. GIZA++ is
implemented such that only a single processor can be used. Both of our current LEAF and Model 4
search implementations are fully parallelized and can be run on any number of processors; this is what
has enabled us to carry out experimentation without implementing the optimizations.

The number of milliseconds used per sentence pair in the E-Step is presented in Table C.1. We
calculated this on the French data set which is 2,842,184 sentences, 67,366,819 English words (see
Table 3.3 on Page 35 for the full statistics). This data set contains sentences of length up to 254 words,
which increases the average search time required, versus other data sets where the sentence length cut-off
is significantly shorter.

We have already shown that our implementation of Model 4 and GIZA++ have the same performance
(as measured by BLEU) in Appendix B.2. In our discussion of Model 4 alignment search implementa-
tions we restrict ourselves to the “baseline” search algorithm, as described by Brown et al. (1993), which
uses a hillclimbing search from only one starting point to converge to a local probability maxima; no
restarts are used, see Section 3.4.2.1.

The first line of Table C.1 shows that we spend an average of 829milliseconds per sentence pair
(column 3) for our unoptimized Model 4 implementation (we sum the two directions in columns 1 and 2
to determine this number, and assume that applying the “Union” or “Refined” symmetrization heuristic
to these two alignments to obtain the final alignment takes a negligible amount of time).

We consider Model 4 in the English to French alignment direction. Our unoptimized implementation
of Model 4 uses a representation of the alignment as a vectorv of lengthm (the number of French
words) wherevj is the position of the English word which generated the French word at positionj. The
two search operations, “move” and “swap” (described in Appendix A.2.5.2), copy this alignment vector,
and change one position (for “move”; two positions are changed for “swap”), and then score the new
alignment created by calling a function which returns a probability for the new alignment.

The second line of Table C.1 shows that the Model 4 implementation in GIZA++ is much faster,
an average of 18 milliseconds is used per sentence pair, which is 46 times faster than our unoptimized
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Table C.1: Average milliseconds per sentence pair in E-Step

SYSTEM E TO F F TO E FINAL M-TO-N
UNOPTIMIZED MODEL 4 (UNSUPERVISED) 336 493 829
GIZA++ MODEL 4 (UNSUPERVISED) 8 10 18
UNOPTIMIZED LEAF (UNSUPERVISED) NA NA 10151
UNOPTIMIZED LEAF (SEMI-SUPERVISED) NA NA 11810

Model 4 implementation. The reason for this is that GIZA++ has two optimizations which are not yet
implemented in our implementation of Model 4.

The first optimization is described by Brown et al. (1993), wewill call it the “Incremental Probability
Calculation” optimization. Given an alignmenta, from which we obtain the alignmenta′ by applying a
particular search operation, we can obtainp(a′, f |e) by a constant small number of steps. This involves
starting fromp(a, f |e), dividing out just the probabilities of the generative actions made to arrive ata
which were not made in arriving ata′, and multiplying in the probabilities of the generative actions
made to arrive ata′ but not made in arriving ata. This is much faster than calculatinga′ from scratch
by looking up the probabilities of all of the generative actions used to obtaina′ (including particularly
those which were the same as those used to arrive ata). The cost of looking up all of the probabilities is
O(l +m) (wherel is the length of the English sentence andm is the length of the French sentence).

In LEAF, such procedures for updating in a constant number ofsteps can also be defined. We will
present a very simple example in which we assume we are calculating LEAF in just the English to French
direction (for ease of exposition). Suppose we have an alignmenta in which an English non-head word
at positioni is in a three word English cept headed by the English head wordat positiony. The “move
English non-head word to new head” search operation is used to changeei to be of word type “deleted”,
resulting in a new alignmenta′. The probabilityz of a′ can be quickly determined given the probability
of a. This is done by performing the following calculations:

• z = p(a, f |e)

• // divide the probability of the non-head word to head word association
z = z/w−1(y − i|classe(ei)

• // divide the probability ofei being type−1 (non-head word)
z = z/g(−1|ei)

• // multiply the probability ofei being type0 (deleted)
z = z ∗ g(0|ei)

• // z is the probability ofa′

returnz

For LEAF, as in the case of Model 4, this allows us to calculatethe probability ofa′ from a in a small
constant number of steps, rather using anO(l+m) lookup of the probabilities for all of the actions. We
expect that the speed up from using this optimization with LEAF is analogous to the speed up obtained
when using this optimization with Model 4.

The second optimization is from the appendix of the work by Och and Ney (2003). This optimiza-
tion is called “Fast Hill Climbing”. If we start from an alignmenta, we can keep a single matrix for
each search operation, which will cachep(a′, f |e)/p(a, f |e) for alignmentsa′ reachable by applying the
search operation toa. For instance, if we have a search operation with two argumentsi andj, a matrixM
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indexed by the possiblei andj values is defined. The probability of an alignmenta′ generated by apply-
ing this search operation using argumentsi andj isM[i,j] times the probability of the original alignment
a. Initially, all of the cells of this matrix must be calculated explicitly by calculating the costs of the
alignments (using the first optimization). However, the speed up of the “Fast Hill Climbing” optimiza-
tion is obtained because updatingM when the starting alignmenta is changed does not require revisiting
all of the cells. Only those columns and rows for which the ratio changes need to be updated, and this
is a small number of rows and columns. This means that after the matrices are initially created, search
simply consists of scanning these matrices for the cell withthe best probability multiplier, updating the
alignment using that search operation, and updating a few ofthe columns and rows of the matrices. Och
and Ney report a 10 to 20 times speed up in local search using this optimization.

This “Fast Hill Climbing” optimization can also be applied to LEAF. Six of the seven search opera-
tions in LEAF also have two arguments and require matrices ofsimilar size to those required for Model
4. The seventh operation, “unlink the link between an English head word and a French head word”
(operation 7 in Table 3.4 on Page 33) has three parameters, but two of these parameters are restricted to
three values each, so this will be a small matrix which can be rapidly updated. The matrices required for
the first six operations arel ∗m, m2 or l2 in size, and it is easy to see that the cost to update them will
be similar to the cost to update the matrices used with Model 4. We believe search using the “Fast Hill
Climbing” optimization is dominated by the time to calculate the initial matrices, where each cell must
be visited. LEAF will require the calculation of six matrices, while each Model 4 direction requires the
calculation of two matrices, for a total of four matrices. Therefore we believe that the speed up obtained
by using this optimization with LEAF will be about 1.5 times less than that obtained for Model 4.

By implementing these two optimizations it is clearly possible to speed up our implementation of
Model 4 to match the speed of the GIZA++ implementation of Model 4. According to our empirical
measurements comparing our unoptimized Model 4 implementation with GIZA++ it will be at least a 46
times speed up1, which is close to the estimate of Och and Ney.

The third line of Table C.1 shows that the unoptimized unsupervised LEAF implementation is very
slow. It is about 12 times slower than the unoptimized Model 4implementation. The fourth line of Table
C.1 shows that the unoptimized semi-supervised LEAF implementation is about 14 times slower than
the unoptimized Model 4 implementation.

As we have already discussed the optimizations required forLEAF are very similar to those used with
Model 4. For LEAF, the results use the new search algorithm ofSection 3.4.2.2, because the baseline
search algorithm is unacceptably slow to converge. The speed ups gained by implementing the two
optimizations discussed in this section apply equally to both the baseline search algorithm and the new
search algorithm as the optimizations make the search operations faster and the same search operations
are used in both algorithms.

In summary, we expect that the first optimization would result in an analogous speed up for LEAF
search to the speed up obtained for Model 4. The speed up from applying the second optimization to
LEAF would be 1/1.5 times the speed up gained for Model 4. The unoptimized Model 4 search can be
sped up by at least 46 times. This implies that we can obtain atleast a 30 times speed up for the LEAF
search process by implementing these optimizations. We plan to implement these optimizations in future
work.

1In fact, it is likely that this speed up would be more than a 46 times speed up as long as we continue
to use the Viterbi approximation in training. GIZA++ uses the “neighborhood” training approximation
(Al-Onaizan et al., 1999; Och & Ney, 2003) by default (we used“neighborhood” training in all of
our experiments using GIZA++). Using the neighborhood approximation requires incurring additional
computational costs to those incurred in Viterbi training,see the appendix of the work by Och and Ney
(2003) for the details.
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C.2 LEAF Search and Dynamic Programming

In this section we briefly consider other search algorithms reported on in the literature which we consider
directly relevant to the search for the LEAF Viterbi alignment. They share the commonality that they are
all based on dynamic programming.

Germann (2003) produced an impressive speed-up in local hillclimbing search for machine trans-
lation by segmenting the starting hypothesis into overlapping local areas (called tiles) which can be
independently searched, and then reintegrating these partial solutions into a complete solution using dy-
namic programming. Such a decomposition appears to be possible for the LEAF model (though it might
be more complicated in the semi-supervised case if global features such as the name transliteration sub-
model are used). If such decomposition is possible this would lead to a much higher performance in
search, particularly when applied in combination with our search advances and the optimizations dis-
cussed in the previous section.

We can also consider search algorithms which are quite different from the local hillclimbing search
algorithms we currently use. Udupa and Maji (2005) defined a search algorithm for Model 4 which con-
siders an exponential number of alignments in polynomial time. Eisner and Tromble (2006) presented a
search algorithm for “very large neighborhood” search in machine translation which can be used to con-
sider an exponential number of reorderings for translationin polynomial time. Both of these approaches
use dynamic programming to examine a much larger space of alignments than our current search algo-
rithms can examine. We speculate that it is possible to produce a dramatically improved search algorithm
for finding the LEAF Viterbi alignment by inventing a similarapproach based on dynamic programming
which allows the consideration of exponentially many LEAF alignments in polynomial time.
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