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Abstract

All state of the art statistical machine translation sysemd many example-based machine translation
systems depend on an annotation of word-level transldticoraespondence between sets of parallel
sentences. Such an annotation of two parallel sentenceslésl @ “word alignment”. The largest
number of manually annotated word alignments currentlylavie to the research community for any
pair of languages consists of alignments for only thousafgsirallel sentences, even though there are
several orders of magnitude more parallel sentences biail&or instance, for the task of translating
Chinese news articles to English, there are currently omtter of 10 million parallel sentences. This
is too many for manual alignment, so they must be autométivadrd aligned.

Unsupervised word alignment systems generate poor qadilitgments, often using statistical word
alignment models developed over 10 years ago, but mosttresssarch into improving word alignments
has not led to improved translation. There are several nsdeo this:

1. There is no good metric which can be used to automaticadigsure word alignment quality for
the translation task.

2. Statistical word alignment models are based on assungpébout the structure of the problem
which are incorrect.

3. Itis difficult to add new sources of linguistic knowledgechuse many current systems must be
completely reengineered for each new knowledge source.

4. Statistical models of word alignment are most often ledrim an unsupervised training process
which is unable to take advantage of annotated data.

This thesis remedies these problems by making contribsifiothe following three areas:

1. We have found a new method for automatically measurinpnalent quality using an unbalanced
F-Measure metric (Fraser & Marcu, 2007b). We have valid#tetithis metric adequately mea-
sures alignment quality for the translation task. We hawevshthat the metric can be used to de-
rive a loss function for discriminative training approashend it is useful for measuring progress
during the development of new word alignment procedures.

2. We have designed a new statistical model for word alignmetled LEAF (Fraser & Marcu,
2007a), which directly models the word alignment structset is used for machine translation,
in contrast with previous models which make unreasonabletstral assumptions.

3. We have developed a semi-supervised training algorithenEMD algorithm (Fraser & Marcu,
2006), which automatically takes advantage of whateventityeof manually annotated data can
be obtained. The use of the EMD algorithm allows for the idtrction of new knowledge sources
with minimal effort.

We have shown that these contributions improve state ofrttstadistical machine translation systems
in experiments on challenging large data sets.

viii



Chapter 1

Motivation

1.1 The Word Alignment Problem

Word alignment is the problem of determining translatiaralespondence at the word level given a pair
of sentences, one of which is a translation of the other. Taptgin Figure 1.1 shows a word alignment
of a pair of parallel sentences taken from the LDC Canadiamskials corpus, which consists of English
and French documents. In this dissertation we will considertask of automatically annotating word
alignments.

Automatically aligning word level translational correspience in parallel sentences so as to be able
to learn translation rules of high quality is a challengimghgem in terms of both accuracy and tractabil-
ity. Most of the currently successful approaches used ijucmtion with state of the art statistical ma-
chine translation systems use statistical models of cilyaftafted generative stories which are trained
using unsupervised learning methods. The task of automatid alignment is very different from the
automatic translation task. In automatic translation, veeteying to generate a reasonable translation,
which does not necessarily attempt to mimic all the comgilexiof human behavior. In automatic word
alignment, on the other hand, we must annotate an origimaesee and whatever humans chose to
produce as a translation.

The research community has recently become very inter@siatbroving the quality of automatic
word alignment, as evidenced by a large number of recentrpdpginning with Al-Onaizan et al.
(1999), and in particular two workshops featuring shareddwadignment tasks, WPT03 (Mihalcea &
Pederson, 2003) and WPTO05 (Martin et al., 2005). One reasothi®is that word alignments are
critical to building statistical machine translation (SIVBystems. For instance, the estimation of phrase-
based SMT models (Koehn et al., 2003) such as those impleahénthe Alignment Templates system
(Och & Ney, 2004) and Moses (Koehn et al., 2007) relies on vatighments. Syntactic SMT models
(Galley et al., 2004; Galley et al., 2006; Melamed, 2004;a6gi 2005; Quirk et al., 2005; Zollmann &
Venugopal, 2006) also require word alignments. Phraseebasd syntactic SMT models represent the
state of the art in SMT, and therefore improving automaticdaadignment is an important endeavor.

Word alignment techniques are not only used in translation,in fact to acquire knowledge in
virtually all trans-lingual tasks: Cross-Lingual Infortien Retrieval (Hiemstra & de Jong, 1999; Xu
et al., 2001; Fraser et al., 2002), Trans-lingual Codingngtimes referred to as annotation projection)
(Yarowsky et al., 2001; Hwa et al., 2002), Document Alignin@Resnik & Smith, 2003), Sentence
Alignment (Moore, 2002), Extraction of Parallel Sentenitesn Comparable Corpora (Munteanu et al.,
2004; Fung & Cheung, 2004), etc. Many approaches to monaingsks also take advantage of knowl-
edge learned from word alignments. Some examples are slipatian (Daung Il & Marcu, 2005),



20 20

the le them——————— le
prime premier primg=—————————— premier
minister ministre minister =————————— ministre
and et anf=—————— et
the le them——————— le
cabinet cabinet
do ne
naot désirent
want pas

tn/dépenser
spend cet

/argent
maney en

colombie
british =
calumbia britannique

Figure 1.1: French/English gold standard woréigure 1.2: French/English gold standard word
alignment alignment (solid lines) and system hypothesis
(dashed lines)

guery expansion for monolingual information retrieval (&tal., 2002; Riezler et al., 2007), paraphras-
ing (Pang et al., 2003; Quirk et al., 2004; Bannard & Calli&urch, 2005), grammar induction (Kuhn,
2004), etc. The focus of this dissertation is on improviram$lation, but it is likely the work described
here will benefit the other tasks mentioned as well. At theenirtime, the word alignment models devel-
oped for annotating translational correspondence areatme snodels used in approaches to exploiting
corpora of parallel sentences for all of these tasks.

Automatic word alignment is not a solved problem. Many MTteyss are trained in an alignment
process based on the IBM Model 4 word alignment model (Brotal.e1993). This process involves
post-processing the output of Model 4 using heuristics. Wetuated on properly annotated gold
standard English/French data, which is a relatively easguage pair for automatic word alignment
systems, this approach has o6/ balanced F-measure. F-measure is a trade-off between tiarda
called Precision and Recall. Precision is the percentagfgedinks we hypothesized which are actually
correct, and Recall is the percentage of the correct linkistwive hypothesized. Balanced F-Measure

2



is the geometric mean of these two numbers. The graph in&ig2rshows a gold standard annotation
and a hypothesized annotation (marked by a dashed linep tNeterrors. English “do not” should be
aligned to French “ne” and “pas” but “not” is aligned to “ne’hile “do” is not aligned. The words “to
spend” should be aligned to égenser”, but only “spend” is aligned toé&denser”. The word “british”

is aligned to “colombie” and “columbia” is aligned to “battique”. The Precision of this hypothesized
alignment, the number of correctly hypothesized links dhertotal number of hypothesized links, is
13/15. The Recall of the hypothesized alignment, the number aketly hypothesized links over the
number of correct links, i$3/19. Balanced F-Measure (the geometric mean of Precision aodllRes
77%, meaning that this hypothesis is better than the averagethggis from this system. The desire to
improve automatic word alignment systems, so that therdeareerrors like these and therefore better
machine translation performance is obtained, motivatesvouk.

1.2 Problems with Current Practices in Word Alignment

1.2.1 Building Translation Systems with Word Alignments

Before we can show the problems with the most widely usedpersised word alignment approach for
statistical machine translation (SMT), we need to brieflifioa how SMT systems use word alignments.

SMT systems are usually broken down into two types of modhel,ttanslation model, which is a
model of translational correspondence between the soarttagget languages, and the language model,
which is a model of well-formed sentences in the target laggu To translate a new source sentence,
we look for a probability maxima of these two models, i.e. warsh for a target string which is both
a good mapping of the source string into a target string amdsis a well-formed target sentence. The
translation model is estimated using a word alignment otexbi{a corpus of aligned sentences in the
source and target languages). The language model is estiftam monolingual target language text.
For further details on building SMT systems using alignmesgte Appendix B.1.

1.2.2 Unsupervised Alignments are Not the Best Alignments Besible for Translation

We would like to substantiate the claim that improved alignts will lead to improved MT systems.
We show that there exist alignments of a fixed bitext whichsigeificantly better for translation than
the alignments generated by our unsupervised baselinensy8te generate the improved alignments by
using an “oracle”, a system which tells our alignment syskenv to improve the alignments; it knows
how to do this by “cheating”. We measure statistical macliaeslation performance both when using
our baseline alignment system, and compare this with usingak oracle” in Figure 1.3. We do this by
using the BLEU metric (Papineni et al., 2001), which is amoeadtic translation evaluation metric which
measures translation quality. BLEU has been shown to aterg@lell with human judgments of quality.
The improved alignments from the “weak oracle” result in aERLscore of 26.36; this is 3.30 points
better than the baseline which is a large improvement. Huows that improving alignments can improve
machine translation performance. See Appendix B.2 for ailéetexplanation of this experiment. Even
determining a good oracle for this problem is difficult. Oweak oracle” is not the upper bound on
performance. Given infinite computational resources wedcfind a “strong oracle” which would have
better performance. We graphically depict this in the fiqasavell but note that the BLEU score such a
“strong oracle” could obtain is unknown. We show later in digsertation how to obtain improved word
alignments without using an oracle.
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Figure 1.3: Comparison of baseline with a weak oracle shguhat it is possible to improve MT per-
formance by improving word alignment

1.2.3 Existing Metrics Do Not Track Translation Quality

There have been many research papers presented at ACL, NAAQL COLING, WPT03, WPTO5,
etc, outlining techniques for attempting to increase wdighanent quality. However, although there
are many results where an alignment system has successftifased the score according to intrinsic
metrics of word alignment quality, very few of these apptechas been shown to result in a large gain
in translation performance. We show that this is becaustbh@trinsic word alignment quality metrics
commonly used do not measure how useful alignments aredoslation. These metrics are balanced
F-Measure (Melamed, 2000) and Alignment Error Rate, or AERh & Ney, 2003). We calculate the
correlation between these metrics and the BLEU metric, Bod/¢hat this correlation is low. A concise
mathematical description of correlation is the coefficiehtletermination «2), which is the square of
the Pearson product-moment correlation coefficientfor an alignment task using a commonly studied
French/English data set = 0.16 for the Alignment Error Rate (AER) metric, showing a low edation
with BLEU. For the same task and annotation, balanced F-webhasr? = 0.20, which also shows a
low correlation with BLEU, see Chapter 2 for more details.

Chapter 2 presents a metric which has a high correlation BlifaU. This metric is shown to allow
the derivation of an effective loss function for semi-swiszd training in Chapter 4.

1.2.4 Existing Generative Models Make False Structural Assumjons

Our objective is to automatically produce alignments whiah be used to build high quality machine

translation systems. These are presumably close to thenadigts that trained bilingual speakers pro-
duce. Human annotated alignments often contain M-to-Nnalignts, where several source words are
aligned to several target words and the resulting unit carbedurther decomposed. Source or tar-
get words in a single unit are sometimes non-consecutivéortimately, existing generative alignment

models can not model these alignments, because they makaligtic assumptions about alignment

structure.

IThis metric is referred to as “balanced F-Measure with Rosdible” later in the dissertation, see
Chapter 2.
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da ne should faudrait

not désirer—lt tale walrrnner
a Erieusernent
want pas
. hard ette
to depenser

that/argent thi
m'jney/.

justification

Figure 1.4:. French/English gold standard woréFigure 1.5: French/English gold standard word
alignment, example 1 alignment, example 2

English Cept| French Cept/| 1-to-1 | 1-to-N | M-to-1 | phrase-based M-to-N discontinuous

do not ne pas v
to spend depenser v v v
we should il faudrait v v
take a look at| examiner v v

Figure 1.6: The impact of alignment structure assumptions

Word alignments define minimal single or multi-word unitstivo parallel sentences which corre-
spond to one another, which we will call “cepts” followingdvn et al. (1993). Alignments for two
examples (created by shortening sentences observed irltgenent” data) are shown in Figures 1.4
and 1.5. We concentrate on several interesting minimaskational correspondences listed in Table 1.6.
The first two are taken from Figure 1.4 and the second two &entbom Figure 1.5. We now discuss
the different alignment structure assumptions which haenbmade in previous work.

The use of the 1-to-N assumption is widespread, probablgussrof the success of the IBM word
alignment models (Brown et al., 1993). 1-to-N alignments alignments where one English word is
aligned to zero or more French words, which need not be catigec Consider the 1-to-N alignment
column in Table 1.6. In the first row, we see an example aligrtvhich the IBM models are not able to
model. The English cept: “do not” is aligned to the Frenchtctpe ... pas” (which is a French negation
construction), this is taken from Example 1 in Figure 1.4isTlequires a many to many, discontinuous
alignment. This can not be modeled because under the 1-ssdgtion the English cept “do not” can
not be modeled as a unit. In fact, the 1-to-N assumption cabaased to model any of the multi-word
phrase mappings we have shown in Table 1.6. Of course, weipdhefldirection and train such that one
French word is aligned to zero or more English words. Howayson examining the M-to-1 column of
Table 1.6, it becomes obvious that this assumption is alsatigfactory. Many other generative models



use the 1-to-N assumption, including the HMM model (Vogehlet 1996) and other models based on
the HMM model, for example the work of Toutanova et al. (2002)pez and Resnik (2005) and Deng
and Byrne (2005).

What is done in practice in systems using the 1-to-N assumpfithe IBM models is that the models
are trained in both directions (English to French and Freadinglish) and then “symmetrized” using a
heuristic (Och & Ney, 2003; Koehn et al., 2003). If we allowrselves to consider the best possible 1-
to-N and M-to-1 alignments in Figures 1.4 and 1.5, can seerabways we might heuristically combine
a 1-to-N alignment with a M-to-1 alignment. However, for raatisparate language pairs (or longer
French/English sentences), it is increasingly difficultiothis correctly. The use of a symmetrization
heuristic also makes it problematic to calculate the proipalof a final combined alignment as it is
unclear how to combine the probabilities assigned by thenhwdels.

There has also been a large amount of work on generativenadighmodels which model 1-to-1
word alignment structure (for instance the work of Wu (199%¢lamed (2000), Ahrenberg et al. (2000),
Cherry and Lin (2003) and Liang et al. (2006)). None of thenepies we have chosen in Table 1.6 can
be modeled with this structure. These models have not beamnsto perform for translation at the
quality level of heuristic symmetrization of the 1-to-N alidto-1 alignments produced using the IBM
models. The claims made about the alignment quality forstedion of these techniques are not well
founded because they are based only on intrinsic metricshainfortunately do not track how useful
the generated alignments are for translation (as we disdwdseady in Section 1.2.3). 1-to-1 alignments
are not generally used in practice to build machine traiosiaystems.

Another common assumption is the phrase-based assumptiteh) is also used in translation in
phrase-based MT systems (Och & Ney, 2004; Koehn et al., 200B)s assumption allows multiple
word units to align to one another, but enforces the comdtthat all words must be consecutive. For
example, the Joint model (Marcu & Wong, 2002) typically aghort segments of consecutive words to
each other obeying this assumption. These models do notlmisdentinuous alignments. As shown in
Table 1.6, this structure cannot be used to align the “nas” pr “take a ... hard look” cepts in Examples
1 and 2 because they have gaps. Discontinuous alignmenisjpogtant to achieve the best possible
performance in translation. The strong performance of theeddSMT model (Chiang, 2005), which
uses such discontinuous alignments directly in the tréinslgrocess, offers direct evidence to support
this. Interestingly, even phrase-based SMT systems, wdniehalready less flexible than hierarchical
SMT systems in that they do not allow gaps in their transtatides, fair poorly when they are built
from alignments which obey the phrase-based alignmenngstsar?. That even phrase-based SMT
systems benefit from discontinuous alignments offers @urglvidence that discontinuous alignments are
important to translation performance.

Since 2005 there have been a number of discriminative maoketsluced for the word alignment
problem. Surprisingly, these models have suffered frons#imee structural assumptions. These models
have either themselves directly required an unreasonafletwral assumption, such as the work of
Ittycheriah and Roukos (2005), Taskar et al. (2005), Lid.g2005), Fraser and Marcu (2006), Blunsom
and Cohn (2006) and Lacoste-Julien et al. (2006), or theg haed features derived from a generative
model implemented with such a structural assumption inrcdaebtain the best performance, examples
include the work of Ayan and Dorr (2006b), Lacoste-Julieale(2006) and Moore et al. (2006). We will
discuss discriminative models in detail in Chapter 4 and$dn particular on the structural assumptions
made.

2For example, a phrase-based SMT system can not learn botihé¢hEnglish cept “hard” translates
as French “serieusement” and that the non-minimal “takerd lwok at” translates as “examiner se-
rieusement” in Figure 1.5, unless the alignment is ablepoagent the gap in the English cept “take a ...
look at”, which violates the phrasal alignment assumption.



The inability of current generative models to model manyrany discontinuous alignments is an
important deficiency. We correct this problem. Our new gatig model, LEAF, is able to model align-
ments which consist of many-to-many non-consecutive mahtmanslational correspondences directly,
without the use of heuristics. LEAF is presented in Chaptevw@ show how to derive features from
LEAF for use in a discriminative model in Chapter 4.

1.2.5 Many Existing Training Techniques Can Not Take Advantag of Manually
Annotated Data

Until recently, start of the art translation systems weegntd using an unsupervised training process
which did not take advantage of manually annotated data. elfhave access to a small amount of
annotated word alignment data, we can shift from viewingratient as an unsupervised problem to
viewing alignment as a semi-supervised problem. In theféagtyears, this has become an active sub-
area of word alignment research, but the advances accaaliragious intrinsic word alignment metrics
have not been shown to result in increased machine tramslagrformance. Many research groups have
continued to use unsupervised techniques to generate Wgningnts. As we will show in Chapter 2,
this is because the loss criteria being used do not refleaigbkilness of the generated alignments for
machine translation.

In Chapter 4 we show that the alignment quality metric we piiisent in Chapter 2 is useful in the
derivation of a loss function for use in semi-supervisething. If we have access to a small aligned
set (we use up to 1,000 annotated sentence pairs), we camtsaiall number of important parameters
directly, and discriminatively smooth richer sub-modelghich would otherwise not be robustly esti-
mated. If we have access to even more annotated data (welyeaequired data where we have up
to 25,000 sentences), we can learn more parameters djraatlthis is still only a fraction of the total
parameters we need to align large corpora (for instance,unertly work on a task which involves
aligning 10,000,000 parallel sentences which requiresyalaege number of parameters, most of which
can not be estimated from a small corpus of 25,000 sentences)

We formulate a new model which is trained in a semi-supedviashion in Chapter 4. This model
uses rich features derived from our new generative modelR,BAt also allows for the easy integration
of new knowledge sources which would be difficult to add to aegative story. This leads to large
increases both in alignment accuracy (up to 9 F-score pantstranslation accuracy (improvements of
up to 2.8 BLEU points) over strong baselines.

1.2.6 Itis Difficult to Add New Knowledge Sources to Generatie Models

Current generative models depend on complex generatisiestehich must be completely reengineered
each time a new knowledge source is added, blocking the arsgliiiction of new sources of linguistic
knowledge to improve translation.

Consider again Figure 1.2. One problem with the hypothdsitignment is that “british” is aligned
to “colombie” and “columbia” is aligned to “brittanique”f We were able to easily incorporate a knowl-
edge source which used string similarity into our alignnmeotdel we might be able to overcome this
problem. We show in Chapter 4 how to integrate a state of th&arsliteration model used for the

3Sub-models are sometimes also referred to as feature dasdti the literature. We call them sub-
models in our framework as a reminder that they themselesgifntly have parameters which are esti-
mated empirically.



transliteration of names from Arabic to English. We alsovelfmw to incorporate a small fully su-
pervised model estimated from 25,000 sentences, as wesdextin the previous section. Most of the
approaches to discriminative word alignment models pteskeim the last two years, for example the
work of Liu et al. (2005), Ittycheriah and Roukos (2005), Karset al. (2005), Ayan and Dorr (2006b),
Lacoste-Julien et al. (2006), Fraser and Marcu (2006), &lonand Cohn (2006) and Moore et al.
(2006), have also addressed the problem of integratingadisp knowledge sources, which shows its
importance.

1.3 Dissertation Approaches in Brief

We have shown that improvements in word alignment qualityteglp MT performance in Section 1.2.2.
We present the problems we address and the approachesiteggblem in brief:

1. As we discussed in Section 1.2.3, existing metrics fordvadignment quality do not predict trans-
lation quality. To address this shortcoming, we describeethod for automatically measuring
alignment quality which is related to improvements in réegltranslation quality. Determining
how to measure word alignment quality for automatic tratisteis addressed in Chapter 2.

2. As shown in Sections 1.2.4, existing generative modelsvivd alignment make false structural
assumptions. To address this problem, we improve word rakgr modeling by designing a sta-
tistical model which directly models the full structure b&tword alignment problem. Improving
word alignment modeling with better structure is addressé&thapter 3.

3. As discussed in Section 1.2.5 and 1.2.6 respectivelgtiegitraining techniques for word align-
ment models will not allow us to take advantage of manuallyoasted word alignments, and do
not allow for easy integration of new knowledge sources. ddress this issue, we develop a new
semi-supervised training algorithm. This algorithm auhtically takes advantage of whatever
quantity of manually annotated data can be obtained, alfowthe robust training of powerful
models, and enables an easy integration of new knowledgeesoulmproving word alignment
training using semi-supervised learning is addressed aph 4.



Chapter 2

Intrinsic Metrics for Measuring the Quality of Word Alignment for
Translation

Automatic word alignment plays a critical role in statisticnachine translation. Unfortunately the re-
lationship between alignment quality and statistical nraelranslation performance has not been well
understood. In the recent literature, the alignment taskftemuently been decoupled from the transla-
tion task and assumptions have been made about measugngnalit quality for machine translation

which, it turns out, are not justified. In particular, nonetud tens of papers published over the last five
years have shown that significant decreases in Alignmeot Rate, AER (Och & Ney, 2003), result in

significant increases in translation performance. We éxiés state of affairs and present a method for
measuring alignment quality in a way which is predictive tatistical machine translation performance.

2.1 Introduction

Automatic word alignment (Brown et al., 1993) is a vital campnt of all statistical machine translation
(SMT) approaches. There were a number of research papessnped from 2000 to 2005 at ACL,
NAACL, HLT, COLING, WPTO03, WPTO5, etc, outlining techniquear fattempting to increase word
alignment quality. Despite this high level of interest, aaf these techniques has been shown to result
in a large gain in translation performance as measured bylB(Fapineni et al., 2001) or any other
translation quality metric. We find this lack of correlatibetween previous word alignment quality
metrics and BLEU counter-intuitive, because we and othegarchers have measured this correlation
in the context of building SMT systems that have benefitethfusing the BLEU metric in improving
performance in open evaluations such as the NIST evalisation

1Since in our experiments we use BLEU to compare the perfocmahsystems built using a com-
mon framework where the only difference is the word aligntnesxe make no claims about the utility of
BLEU for measuring translation quality in absolute termsy;, its utility for comparing two completely
different MT systems. We only assume that BLEU tracks tetieeh quality differences caused by the
effects of different word alignments of a fixed bitext. Thésa much less general assumption than as-
suming that BLEU can be used to compare, for instance, abased system and a statistical machine
translation system, or two statistical machine transtasipstems which were trained on differing bitext
and/or monolingual text. We argue that any systematic obmigthe alignments which result in better
BLEU scores on an unseen test set (i.e. changes which arewitideit examination of that test set)
must be viewed as improvements to the alignments for thevaatto translation task.



We confirm experimentally that previous metrics do not meBLEU well and develop a method-
ology for measuring alignment quality which is predictiveBLEU. We also show that AER is not
correctly derived from F-Measure and is therefore unlikelpe useful as a metric.

2.2 Experimental Methodology
2.2.1 Data

To build an SMT system we require a bitext and a word alignnoénthat bitext, as well as language
models built from target language data. In all of our experits, we will hold the bitext and target
language resources constant, and only vary how we consgitreigiord alignment.

The gold standard word alignment sets we use have been maanabtated using links between
words showing minimal translational correspondenceskd.imhich must be present in a hypothesized
alignment are called “Sure” links. Some of the alignmens séto have links which are not “Sure” links
but are “Possible” links (Och & Ney, 2003). “Possible” linkdich are not “Sure? may be present but
need not be present.

We evaluate the translation performance of SMT systemsamglkating a held-out translation test set
and measuring the BLEU score of our hypothesized trangsgainst one or more reference transla-
tions. We also have an additional held-out translationteetdevelopment set, which is employed by
the MT system to train the weights of its log-linear model taximize BLEU (Och, 2003). We work
with data sets for three different language pairs, exargifiirench to English, Arabic to English, and
Romanian to English translation tasks.

The training data for the French/English data set is takem the LDC Canadian Hansards data set,
from which the word aligned data (presented by Och and Ne§3p@vas also taken. The English side
of the bitext is 67.4 million words. We used a separate Camatiansards data set (released by ISI)
as the source of the translation test set and developmeniVseevaluate two different tasks using this
data, a medium task where 1/8 of the data (8.4 million Englishds) is used as the fixed bitext, and a
large task where all of the data is used as the fixed bitext.4Bdesentences in the gold standard word
alignments have 4,376 Sure Links and 19,222 Possible liSke alignment set A in Table 2.1 for the
data statistics (note that alignment sets B and C will b@éhiced later).

The Arabic/English training corpus is the data used for th8TN2004 machine translation evalu-
atior®. The English side of the bitext is 99.3 million words. Thenskation development set is the
“NIST 2002 Dry Run”, and the test set is the “NIST 2003 evdlwaset”. We have annotated gold stan-
dard alignments for 100 parallel sentences using Sure, lfokewing the Blinker guidelines (Melamed,
1998) which calls for Sure links only (there were 2,154 Sinkd). Here we also examine a medium
task using 1/8 of the data (12.4 million English words) andrgé task using all of the data. Note that we
had four references available for the translation testséti@nslation development set (used for train-
ing Maximum BLEU), which allowed the use of less test sengsrihan for the other data sets where
we used much larger translation development and test seasibe we only had access to one reference
translation. See Table 2.2 for the data statistics.

The Romanian/English training data was used for the taskoomanian/English alignment at WPTO03
(Mihalcea & Pederson, 2003) and WPTO05 (Martin et al., 2005¢. darefully removed two sections of
news bitext to use as the translation development and tesst Blee English side of the training corpus

2Sure” links are by definition also “Possible”.
Shttp://www.nist.gov/speech/tests/summaries/20044ohitn

10



Table 2.1: French/English Dataset

FRENCH ENGLISH
SENTENCES 355,273
MEDIUM TRAINING WORDS 9,487,633 8,438,05(
VOCABULARY 65,239 49,121
SINGLETONS 25,622 19,253
SENTENCES 2,842,184
L ARGE TRAINING WORDS | 75,794,254 67,366,819
VOCABULARY 149,568 114,907
SINGLETONS 60,651 47,765
TRANSLATION DEV SENTENCES 833
WORDS 20,562 17,454
TRANSLATION TEST SENTENCES 2,380
WORDS 58,990 49,182
SENTENCES 484
WORDS 8,482 7,681
ALIGNMENT SET A SURE LINKS 4,376
PossIBLELINKS 19,222
SENTENCES 110
ALIGNMENT SETB WORDS 1.888 1,726
SURE LINKS 1,037
PossIBLELINKS 3,989
SENTENCES 110
ALIGNMENT SETC WORDS 1,888 1,726
SURE LINKS 2,292

is 964,000 words. The gold standard alignment set is thelfil®annotated sentences used for the 2003
task (there were 3,181 Sure links). For the data statistiesTable 2.3.

2.2.2 Measuring Translation Performance Changes Caused By i§hment

In phrased-based SMT (Koehn et al., 2003) the knowledgeceswrhich vary with the word alignment
are the phrase translation lexicon (which maps source e#rastarget phrases using counts from the
word alignment) and some of the word level translation patens (sometimes called lexical smoothing).
However, many knowledge sources do not vary with the finakdwadignment, such as scores assigned
using IBM Model 1, N-gram language models and the length peria our experiments, we use a state
of the art phrase-based system, similar to (Koehn et al.3R20Che weights of the different knowledge
sources in the log-linear model used by our system are gtaiseng Maximum BLEU (Och, 2003),
which we run for 25 iterations individually for each systeifiwo language models are used, one built
using the target language training data and the other iilguadditional news data.

2.2.3 Generating Alignments of Varying Quality

We have observed in the past that generative models usefistisal word alignment create alignments
of increasing quality as they are exposed to more data. Th#ian behind this is simple; as more co-
occurrences of source and targets words are observed, tlitealgnments are better. If we wish to
increase the quality of a word alignment, we allow the aligntrprocess access to extra data which is
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Table 2.2: Arabic/English Dataset

ARABIC ENGLISH
SENTENCES 482,965
MEDIUM TRAINING WoRDS | 11,218,869 12,424,253
VOCABULARY 185,441 77,298
SINGLETONS 81,565 34,645
SENTENCES 3,863,718
L ARGE TRAINING WoORDS | 89,705,083 99,326,492
VOCABULARY 426,746 191,349
SINGLETONS 143,552 77,430
TRANSLATION DEV SENTENCES 203
WORDS 5,039 6.4KT0 7.0K
TRANSLATION TEST SENTENCES 663
WORDS 16,491 19.0Kro021.7K
SENTENCES 100
ALIGNMENT SET WORDS 1,747 2,029
SURE LINKS 2,154
Table 2.3: Romanian/English Dataset
ROMANIAN  ENGLISH
SENTENCES 45,241
SMALL TRAINING WORDS 913,806 963,615
VOCABULARY 44,390 24,918
SINGLETONS 18,865 8,473
TRANSLATION DEV SENTENCES 800
WORDS 15,864 16,896
TRANSLATION TEST SENTENCES 2,400
WORDS 46,740 48,758
SENTENCES 148
ALIGNMENT SET WORDS 2,773 2,875
SURE LINKS 3,181

used only during the alignment process and then removede ifish to decrease the quality of a word
alignment, we divide the bitext into pieces and align theeggeindependently of one another, finally
concatenating the results together.

To generate word alignments we use GIZA++ (Och & Ney, 20038)ictvimplements both the IBM
Models (Brown et al., 1993) and the HMM word alignment modéldel et al., 1996). We use Model 1,
HMM, and Model 4 in that order. The output of these models ialggnment of the bitext which projects
one language to another. GIZA++ is run end-to-end twice na @ase we project the source language to
the target language (producing the “1-to-N" alignmenty] amthe other we project the target language to
the source language (producing the “M-to-1" alignment)e Bltput of GIZA++ is then post-processed
using the three “symmetrization heuristics” described loy @nd Ney (2003), “Union”, “Intersection”
and “Refined”. We evaluate our approaches using these liesiticause we would like to account for
alignments generated in different fashions. These thregdties were used as the baselines in virtually
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Figure 2.1: All of these alignments are equivalent from agftational correspondence perspective

all recent work on automatic word alignment, and many of tbst ISMT systems use these techniques
as well.

The “Union” heuristic simply combines the links in the 1itbalignment with the links in the M-
to-1 alignment, and usually has a higher recall than eithdreostarting alignments. The “Intersection”
heuristic takes only those links occurring in both aligntseand usually results in a higher precision
than either of the starting alignments. The “Refined” symipation heuristic starts from the intersection
of the two alignments and adds links from the union, and lgtals higher precision than the union of
the 1-to-N and M-to-1 alignments and higher recall than thersection of these alignments.

We describe the “Refined” symmetrization heuristic in fertdetail. The first step in applying the
heuristic is to take the intersection of the 1-to-N and Mttatignments and store the links into a set
A. We then take the union of the 1-to-N and M-to-1 alignmenis subtractA, resulting in a sed’
of the links in only one of the two alignments. Each link4n is then considered for addition t&. A
link (7, j) connecting the source word at positibwith the target word at positiof is added toA if a
“neighboring” link is already in4, and subject to an additional constraint which we will ddser The
“neighboring” links to(i, j) are the linkg(i, j + 1), (¢, — 1), (¢ + 1, j) and(i — 1, j). The constraint is
that the addition ofi, j) must not result inA containing any link(i’, j°) such that both the source word
ati’ and the target word at' are involved in more than one link id. Once no further link addition
can be performedd is returned as the result. In practice, an implementatigraeds outwards from
each link in the intersection, and requires defining bothatfaker in which the links in the intersection
are visited, and the order in which the neighbors to a viditgdare checked for addition. The usage
of the “Refined” symmetrization heuristic results in a synmzed alignment consisting of minimal
translational correspondences which are either 1-to-N-0o4 and consist of consecutive words only.

In this work, when applying the “Union” symmetrization hetic we take the transitive closure of
the bipartite graph created, which results in fully conedetomponents indicating minimal translational
correspondenée All of the alignments in Figure 2.1 are equivalent from ansiational correspondence
perspective and the first two will be mapped to the third ineor ensure consistency between the
number of links an alignment has and the translational edgices licensed by that alignment.

2.3 Word Alignment Quality Metrics

2.3.1 Alignment Error Rate is Not a Useful Measure

We begin our study of metrics for word alignment quality bstileg Alignment Error Rate (AER) (Och
& Ney, 2003). AER requires a gold standard manually anndtatt of Sure links and Possible links

4We have no need to do this for the “Refined” and “Intersectlmtiristics, because they only produce
alignments in which the components are already fully cotetec

13



(referred to asS and P). Given a hypothesized alignment consisting of the link4ethree measures
are defined:

Precisiorf4, P) = |P|2|A| if (/A/ > 0), 1 otherwise (2.1)
Recall 4, 5) = 12 |g|‘4| if (/S/>0),  1otherwise 2.2)
AER(A, P,8) =1— T ”é"i"jlm AL s/ +/4))>0),  Ootherwise  (2.3)

Och and Ney’s definition of Precision measures the percergflinks in our hypothesized set which
are Possible (note that Precision decreases from 1 onlpleswhich are not even Possible are hypoth-
esized, and note that all Sure links are by definition PosgidRecall measures the percentage of the
links in the Sure set which have been hypothesized (notéPtbsdible links may either be hypothesized
or not hypothesized, this does not affect Recall). In ordeafhypothesis to be 100% correct (i.e. have
Precision=1 and Recall=1), all of the links in the Sure sestbe hypothesized, and any additional links
hypothesized must be in the Possible set.

In our graphs, we will preserit— AER so that we have an accuracy measure.

We created alignments of varying quality for the medium EhgBnglish training set. We broke
the parallel text into separate pieces corresponding t, /B, 1/4 and 1/2 of the original parallel text
to generate degraded alignments, and we used 2, 4, and 8ttimesiginal parallel text to generate
enhanced alignments. In all cases we use only the alignnii¢hé @riginal parallel text to build a MT
system for measuring BLEU. For the “fractional” alignmews report the average AER of the pietes

The graph in Figure 2.2 shows the correlation of AER with BLEU. High correlation would look
like a line from the bottom left corner to the top right cornéis can be seen by looking at the graph,
there is low correlation betwedn— AER and the BLEU score. A concise mathematical descriptfon o
correlation is the coefficient of determinatiort), which is the square of the Pearson product-moment
correlation coefficientr(). Here,r? = 0.16, which is low.

The correlation is low because of a significant shortcominipé mathematical formulation of AER
which to our knowledge has not been previously reported. achNey (2003) state that AER is derived
from F-Measure. But AER does not share a very important ptgpé F-Measure, which is that unbal-
anced precision and recall are penalized, where P (i.e. when we make the Sure versus Possible
distinction, meaning that is a proper subset d?)®. We will show this using an example.

We first define the measure “F-Measure with Sure and Posaiblafj Och and Ney’s Precision and
Recall formulas together with the standard F-Measure ftar{Rijsbergen, 1979). In the F-Measure
formula (2.4) there is a parameterwhich sets the trade-off between Precision and Recall. When a
equal trade-off is desired is set t00.5.

SFor example, for 1/16, we perform 16 pairs of alignments {agfalignments is a 1-to-N alignment
and a M-to-1 alignment), each of which includes the full getlshdard text. We perform another 16 pairs
of alignments without the gold standard text. We then appdysymmetrization heuristics to each these
pairs. We use the symmetrized alignments including theftert the gold standard set to measure AER
and take the average. We concatenate the symmetrized a&ligamot including the gold standard text
to build SMT systems for measuring BLEU.

Note that ifS = P then 1-AER reduces to balanced F-Measure
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1

F-measure with Sure and Possible P, S, o) = (2.4)

@ + (1-a)
Precisiona,r) " Recall4,s)

We compare two hypothesized alignments whetk the number of hypothesized alignment links,
is the same; for instancgd| = 100. Let|S| = 100. In the first case, lIgtP N A| = 50 and|S N A| = 50.
Precision i9).50 and Recall i9).50. In the second case, I#? N A| = 75 and|S N A| = 25. Precision is
0.75 and Recall i€).25.

The basic property of F-Measure, if we seequal t00.5, is that unbalanced precision and recall
should be penalized. The first hypothesized alignment h&sMeasure with Sure and Possible score of
0.50, while the second has a worse sca@rgys.

However, if we substitute the relevant values into the fdenfar AER (Equation 2.3), we see that
1 — AER for both of the hypothesized alignment9i5. Therefore AER does not share the property of
F-Measure (withh = 0.5) that unbalanced precision and recall are always penalBedause of this, it
is possible to maximize AER by favoring precision over reaahich can be done by simply guessing
very few alignment links. Unfortunately, whe$ C P, this leads to strong biases, which makes AER
not useful as a metric.

Goutte et al. (2004) previously observed that AER could biitlyp optimized by using a bias
towards precision which was unlikely to improve the usefgk of the alignments. Possible problems
with AER were discussed at WPT 2003 and WPT 2005.

Examining the graph in Figure 2.3, we see that F-MeasureSutke and Possible has some predictive
power for the data points generated using a single heuyrisiiche overall correlation is still low:? =
0.20. We need a measure which predicts BLEU without having a digray on the way the alignments
are generated.

2.3.2 Balanced F-Measure is Better, but Still Inadequate

We wondered whether the low correlation was caused by the &ud Possible distinction. We re-
annotated the first 110 sentences of the French test set th&iri§jinker guidelines (Melamed, 1998),
there were 2,292 Sure links. This is alignment set C in Taldle\®/e define F-Measure without the Sure
versus Possible distinction (i.e., all links are Sure) iu&tpn 2.5, and set = 0.5. This measure has

been extensively used with other word alignment test satgir€ 2.4 shows the results. Correlation is
higher,r? = 0.67.

1

F-measuré4, S, a) = (2.5)

a + (1_0‘)
Precisiona,s) " Recall4,s)

2.3.3 Varying the Trade-off Between Precision and Recall Wds Well

We then hypothesized that the trade-off between precisidir@call is important. This is controlled in
both formulas by the constant We searched = 0.1,0.2, ..., 0.9 for the best-? value. The best results
were:« = 0.1 for the original annotation annotated with Sure and Posgg#e Figure 2.5), and= 0.4
for the first 110 sentences as annotated by us (see Figure 16 relevant-> scores werd.80 and
0.85 respectively. With a good setting, we are able to predict the machine translatioriteesasonably

"We also checked the first 110 sentences using the originatation to ensure that the differences
observed were not an effect of restricting our annotatighése sentences, see alignment set B in Table
21
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well. For the original annotation, recall is very highly \gbted, while for our annotation, recall is still
more important than precisi®n Our results also suggest that better correlation will Hdea@d when
using Sure-only annotation than with Sure and Possibletation.

We then tried the medium Arabic training set. Results arevshio figure 2.8, the best setting of
a = 0.1, andr? = 0.93. F-Measure is effective in predicting machine translaperformance for this
set.

We also tried the larger tasks, where we can only decreaganadint quality as we have no additional
data. For the large French/English corpus the best resdtwith o = 0.2 for the original annotation
of 484 sentences and = 0.4 for the new annotation of 110 sentences with only Sure liskg Figure
2.7). Relevant? scores wer@.62 and(.64 respectively. Disappointingly, our measures are not able t
fully explain MT performance for the large French/EngliakK.

For the large Arabic/English corpus, the results were hetie best correlation was at= 0.1, for
which? = 0.90 (see Figure 2.9). We can predict MT performance for thislsetworth noting that the
Arabic/English translation task and data set has beendt@steonjunction with our translation system
over a long period, but the French/English translation tastk data has not. As a result, there may be
hidden factors that affect the performance of our MT systdricivonly appear in conjunction with the
large French/English task.

One well-studied task on a smaller data set is the Romanigti#h shared word alignment task
from the Workshop on Parallel Text at ACL 2005 (Martin et @D05). We only decreased alignment
guality and used 5 data points for each symmetrization bctidue to the small bitext. The best setting
of o wasa = 0.2, for whichr? = 0.94 (see Figure 2.10), showing that F-Measure is again efiedtiv
predicting BLEU.

2.4 Previous Work

Most previous work on measuring alignment quality has fedusn comparison of a hypothesis with a
gold standard word alignment using some type of distanceienetuch as our work does. The differ-
ences between these studies have focused primarily on tiglting of the links in a single minimal
translational correspondence, examining how each of thel wavel links should be weighted (e.g.,
should the link in a 1-to-1 correspondence be considere@te bqual weight with one of the links in
a 1-to-2 correspondence, or should it have the same weidgbtascombined? How should the links
in a 2-to-2 correspondence, which involves four links atwhed level, be weighted?). Based on our
investigations this does not appear to be as important asatie-off between the loss involved in pre-
dicting incorrect links versus the loss involved in not pesidg correct links which is tuned using in
the F-Measure formula. Melamed (2000) has a formula for lateig the links in large minimal units
of translation to avoid giving these units too much weighteDasic idea of this metric is that the sum
of all links to a word should have a constant weight. Och ang (003) claim that using the Sure and
Possible links defined for F-measure with Sure and Poss#ifestdetermine how to correctly weight
non-compositional links, but our experiments cast doubtvbether this is necessary because we have
shown evidence that F-Measure with Sure and Possible is oo effective than simple F-Measure.
Other approaches to dealing with non-compositional linkgehbeen tried. Davis (2002) has a metric
similar to Melamed’s which implements the same weightirepiof words having constant weight, but
in a simpler fashion. Ahrenberg et al. (2000) develop sintipleprecision/recall as the basis for a metric
to evaluate the alignment of multiple English words to thrgédecompound words which are common in

8« less than0.5 weights recall higher, whilex greater thar0.5 weights precision higher, see the
F-Measure formulas.
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Germanic languages such as Swedish and German. None oftleéises have been shown to be useful
extrinsically, for measuring machine translation perfante or measuring performance for any other
task. These metrics do have one advantage over F-Measuieh istthat they do not require tuning
the o parameter for each new task. However, our results showhkaidst trade-off between Precision
and Recall varies by alignment task, so varying this traifievil likely be required in any successful
approach involving comparison of hypothesized word linka gold standard.

There are also approaches to measuring word alignmentyjuddich do not involve using a gold
standard word alignment of a small sample of parallel sesgrbut instead building a translation lexicon
from the whole alignment. Wu and Xia (1995) sample the tiatiesh lexicon and uses both manual and
automatic filters to measure precision. Melamed (2000)stakeample from the translation lexicon and
measures probability weighted precision manually, and tieeuses this to estimate probability weighted
recall. Koehn and Knight (2002) evaluate a translationclesiby counting how many of the entries are
found in a dictionary, which we find interesting as it is ausdim, but it is limited as dictionary entries
will likely only exist for matches between the frequent snef content words (without accompanying
function words). The commonality of these approachestiesing an abstract implicit context, whether
that used for the translation dictionary or that used in aumbhavaluation, where the evaluators directly
judge translational correspondence without observingtiméext in which the presumed correspondence
occurs. Our approach is superior, at least for the task & deven machine translation, in that it
evaluates alignment accuracy in the observed context aflpesentences where many of the minimal
translational correspondences are only contextuallyvatad and would not apply to all contexts. We
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expect our translation system to learn not only idealizaddiations applicable in any context, which are
what is found in a translation dictionary, but also trarista which are contextually motivated and may
apply only in certain contexts. If we do not learn the latigret of translations we are failing to take full
advantage of our (limited) training data.

Appearing somewhat later than our study, two recent pa@ss looked at the relationship between
alignment accuracy and translation performance. LopeRastik (2006) looked at the impact of align-
ments on phrase-based MT for a Chinese/English task usikigvBirds of English and 27M words of
Chinese. We found this study interesting in that it showddence that phrase-based MT systems be-
come less sensitive to alignment quality as training sizeeiases, which we also found in our study.
This appears to be due to a saturation of the parametersimgiaase-based MT models which do not
model context as richly as newer approaches such as higalrotodels and supervised syntactic mod-
els. Ayan and Dorr (2006a) looked at the same trade-off kestvRrecision and Recall that we examined.
They study small alignment tasks for Chinese/English (4 BEriglish words) and Arabic/English (1.4 M
English words). This work only considered a single lowemtkalignment and a single lower precision
alignment along with three other alignments. One of therdmutions is the definition of an error metric
called CPER, which equally weights Precision and Recall pteases extracted from the hypothesized
alignment with respect to phrases extracted from the gajdiialent, but unfortunately they were unable
to show that this metric is an effective predictor of MT penfiance. Both of these studies are limited
to generalizations about phrase-based MT models for smaletdium sized tasks. As we will show in
Chapter 4, our metric can be used to derive a loss functionadyze not only improved alignments for
phrase-based MT but also improved alignments for hieraatlind supervised syntactic MT models,
which use richer context and more structure than phrasedisld and are therefore more likely to be
affected by alignment quality at large training data siZedditionally, we have shown that there is not a
single best trade-off between Precision and Recall forlgihement tasks, but instead there is a signifi-
cant difference in the best trade-off depending on the taskinstance, our research shows that the best
results for large Chinese/English tasks tend to favor lwadfPrecision and Recall, a finding which is not
inconsistent with the observation of Ayan and Dorr (2006asmall Chinese/English data tasks. How-
ever, obtaining the best results for large Arabic/Englasks requires strongly favoring Recall, which is
opposite the conclusion for small Arabic/English taskshea by Ayan and Dorr (2006a).

Our work invalidates some of the conclusions of recent atignt work which presented only eval-
uations based on metrics like AER or balanced F-Measuregaplains the lack of correlation in the
few works which presented both such a metric and final MT tes#l good example of the former are
our own results (Fraser & Marcu, 2005). The work presentecethad the highest balanced F-Measure
scores for the Romanian/English WPTO5 shared task, but lasé#te findings here it is possible that
a different alignment algorithm tuned for the correct ei@a would have had better MT performance.
Other work includes many papers working on alignment modélsre words are allowed to participate
in a maximum of one link. These models generally have highecigion and lower recall than IBM
Model 4 symmetrized using the “Refined” or “Union” heuristicBut we showed that AER is broken
in a way that favors precision in Section 2.3.1. It is thereflikely that the results reported in these
papers are affected by the AER bias and that the corresppidjsrovements in AER score do not cor-
relate with increases in phrasal SMT performance. We wilsfurther evidence that F-Measure with a
tuned trade-off between Precision and Recall is effectjvading this metric to derive a loss criterion in
discriminative modeling in Chapter 4.

While we have addressed measuring alignment quality forgath@MT, similar work is now required
to see how to measure alignment quality for other tasks. Raevaluation campaign the organizers
should pick a specific task, such as improving phrasal SMd,catculate an appropriateto be used.
Individual researchers working on the same phrasal SMTstaskhose reported on here (or very similar
tasks) could use the values@fwe calculated.
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2.5 Summary

We have presented an empirical study of the use of simpleiatiah metrics based on gold standard
alignment of a small number of sentences to predict macharesiation performance. Based on our
experiments we can now draw the following conclusions:

1. We measured the correlation between our unbalanced Biveanetric and BLEU. Good corre-
lation was obtained for the medium French and Arabic dat Hat large Arabic data set and the
small Romanian data set. We have explained most of the effedignment quality on these sets,
and if we are given the F-measure of a hypothesized wordrakgu for the bitext we can make a
reasonable prediction as to what the resulting BLEU scollebwi

2. We recommend using the Blinker guidelines as a startirigt gor new alignment annotation
efforts, and that Sure-only annotation be used. If a largéd gtandard is available and was
already annotated using the Sure versus Possible distindtiis is likely to have only slightly
worse results.

3. When we make the distinction between Sure and Possibkg IKKKR does not share the important
property of F-Measure that unequal precision and recalparalized, making it easy to obtain
good AER scores by simply guessing less alignment links. esalt AER is a misleading metric
which should no longer be used.

We suggest comparing alignment algorithms by measurinfpeance in an identified final task
such as machine translation. F-Measure with an appropéteg ofa will be useful during the devel-
opment process of new alignment models, or as a maximizatiterion for discriminative training of
alignment models. We will return to the topic of discriminettraining in Chapter 4, where we will use
our new metric to derive a loss function in conjunction witkeami-supervised training algorithm, and
show that this improves translation quality.

2.6 Research Contribution
We found an automatic intrinsic metric which measures wdighment quality for the translation task

in a better fashion than the currently used metrics.
In addition, this metric will be shown to be useful to derivéoas function for semi-supervised

training in Chapter 4.
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Chapter 3

Improving Structural Assumptions with a New Many-to-Many
Discontinuous Generative Alignment Model

Previous generative word alignment models have made wmahk assumptions about the desired word
alignment structure, which do not match the alignment stinecused to build statistical machine trans-
lation systems. Previous discriminative models have eittede such an assumption directly or used
features derived from a generative model making one of tagssemptions.

Two incorrect word alignment structures are particuladgnenon. The firstis the 1-to-N assumption,
meaning that each source word generates zero or more tawgds which requires heuristic techniques
in order to obtain alignments suitable for training a SMTtegs The second is the consecutive word-
based “phrasal SMT” assumption. This does not allow gapsiimmal translation correspondences. We
discussed the problems with these word alignment struetssamptions in Section 1.2.4, and we will
discuss these issues further in Section 3.6, which outfine@gous work on generative models of word
alignment.

Our objective is to automatically produce alignments wiieh be used to build high quality ma-
chine translation systems. These are presumably close @lithments that trained bilingual speakers
produce. Human annotated alignments often contain M-tdigthments, where several source words
are aligned to several target words and the resulting unihoabe further decomposed. Source or target
words in a single unit are sometimes non-consecutive.

We describe a new generative model, LEAF, which directly el®d/-to-N non-consecutive word
alignments.

3.1 Introduction

For ease of exposition, the source language for the trémsltsk is referred to as “French”, and the
target language is referred to as “English”, although thesebe any language pairs in practice. The
translation problem is defined as given a French stfinfind the English string, and is presented in
Equation 3.1.

é = argmax Pr(e|f) = argmax Pr(e) * Pr(f|e) (3.1)

The variablee represents any potential English string made up of Englistds: Pr(e) represents
the true distribution over English string®2r(f|e) represents the true distribution over French strings
generated from English strings.

ConsiderPy(f|e) to be a model ofPr(f|e). If we introduce a hidden variablerepresenting word
alignments, we can sum over all possible alignments, as uatan 3.2.
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Py(fle) =Y Po(f,ale) (3.2)

For our task, which is word alignment annotation, we havedfiggingsf ande, and we wish to
select the best alignment according to the modelwhich we do in Equation 3.3. This alignment is
called the Viterbi alignment.

4 = argmax Py(ale, f) = argmax Py(f, ale) (3.3)

We will subsequently drop the subscript when calculating probabilities according to niedel.
Note that generative word alignment models often model tlebability of stochastically generating
the French string from the English string. This is the resadection of the translation task, and is
motivated by the noisy channel formulation which is the tigtost term in Equation 3.1. For this reason
we will refer to English as the “source” language and Frersktha “target” language subsequently in
this chapter, as is standardly done in the word alignmeatdlitire.

3.2 LEAF: A Generative Word Alignment Model
3.2.1 Generative Story

We introduce a new generative story which enables the legmwii non-consecutive M-to-N alignment
structure. We use the same notation as the generative stoiddel 4 (Brown et al., 1993), which
we are extending, where this is possible. The reader may ffingeiful to consult Appendix A for a
discussion of Model 4.

The LEAF generative story describes the stochastic gaaeraf a target stringf (sometimes re-
ferred to as the French string, or foreign string) from a sewstringe (sometimes referred to as the
English string), consisting dfwords. The variablen is the length off. We generally use the indéxo
refer to source words:( is the English word at positio#), and; to refer to target words.

Our generative story makes the distinction between difietypes of source words. There are head
words, non-head words, and deleted words. Similarly, fiayetewords, there are head words, non-head
words, and spurious words. A head word is associated withh @emore non-head words; each non-
head word is associated with exactly one head word. The parpbhead words is to try to provide a
robust representation of the semantic features necessdegd¢rmine translational correspondence. This
is similar to the use of syntactic head words in statisti@akprs to provide a robust representation of
the syntactic features of a parse sub-tree. However, anrtengiaifference is that in current training ap-
proaches the head words are not determined using superya&iootated training data) or hand-written
rules, but instead estimated in an unsupervised fashion.

A minimal translational correspondence consists of a lijgketween a source head word and a tar-
get head word (and by implication, the non-head words witiely are associated with). Each head word
is involved in exactly one such link. Deleted source wordsrat involved in a minimal translational
correspondence, as they were “deleted” by the translatioregs. Spurious target words are also not in-
volved in a minimal translational correspondence, as thepsneously appeared during the generation
of other target words.

Figure 3.1 shows a simple example of the stochastic genaratia French sentence from an English
sentence, annotated with the step number in the genera&ding which we present next.

In specifying the generative story we will introduce some netation. We use the three word classes
class, class, and clasg to reduce the dimensionality of the English vocabulary,Rrench vocabulary
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and the French head word vocabulary respectively. To ddimdistortion model we use two notational
tools: p; is the previous English head word to the English head woig atdc, is the “center” of the
French cept, the average of the positions of the words inepé& evhose head word is linked with the
English head word at position
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. Choose the source word type.

for eachi = 1,2, ...,1 choose a word typg; = —1 (hon-head word)y; = 0 (deleted word) or
xi = 1 (head word) according to the distributigfiy;|e;)

let Xo = 1
. Choose for each non-head word the identity of the head Wwi@@ssociated with

for eachi = 1,2,...,1 if x; = —1 choose the position of the associated head waqrébr the
non-head word; according to the distributiom_; (u; — i|class (e;))

foreachi =1,2,....lif x, =1letu;, =i
foreachi =1,2,....1if x;, =0letu; =0
*foreachi = 1,2, ..., lif x,, # 1 return “failure”

. Choose the identity of the generated target head wordafdr source head word
foreachi = 1,2, ...,1if x, = 1 chooser;; according to the distributioty (7;1|e;)
. Choose the number of words in each target cept. This isittoneld on the identity of the source

head word from which the target head word was generated ansbilrce cept size/is 1 if the
cept size is 1, and 2 if the cept size is greater than 1)

for eachi = 1,2,...,1 if x; = 1 choose a target cept sizg according to the distribution
s(viles, vi)
foreachi =1,2,....1if x; <1lety; =0
. Choose the number of spurious words.
chooseyy according to the distributios, (vo| >, 1)

letm = ”(/}0 + Zé=1 1/}1

. Choose the identity of the spurious words.
for eachk = 1,2, ..., 19 choosery; according to the distributioty (o)

. Choose the identity of the target non-head words assakvaith each target head word.
for eachi = 1,2,...,1 and for eachk = 2,3, ...,9; chooser;; according to the distribution
t>1(Tikles, class, (7i1))

. Choose the position of the target head and non-head words.
foreachi = 1,2,...,1 and for eactk = 1, 2, ..., ¢; choose a positiorr;;, as follows:

e if £ = 1 chooser;; according to the distributiot; (r;; — ¢, |class (e,,), class (7:1))
e if k = 2 chooser;, according to the distributiotl (m;2 — m;1|clasg (1))
e if k > 2 chooser;;, according to the distributiods» (m;x, — mik—1|class (71))

* if any position was chosen twice, return “failure”

. Choose the position of the spuriously generated words.

for eachk = 1,2,...,9y choose a positiofrg;, from ¢y — k + 1 remaining vacant positions in
1,2, ...,m according to the uniform distribution

let f be the stringfm;,. = 7
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We note that the steps which return “failure” (the two steskad with a “*” in the generative story)
are required because the model is deficient. Deficiency nthaha portion of the probability mass in the
model is allocated towards generative stories which woesdlt in infeasible alignment structures. Our
model has deficiency in the non-spurious target word placgmest as Model 4 does. It has additional
deficiency in the source word linking decisions. Och and Ne§0B) presented results suggesting that
the additional parameters required to ensure that a modetideficient result in inferior performance,
but we plan to study whether this is the case for our generativdel in future work.

3.2.2 Mathematical Formulation

Givene, f and a candidate alignmedtwhich represents both the links between source and taeget h
words and the head word connections of the non-head wordsiowtkel like to calculateP( f, ale). The
formula for this is:

P(f,ale) =[1_i[19(><i|6i)]
[1_111 S(Xi, —1)w—1(u; — i[class (e;))]
[1_1[1 (xi, Dta(7ires)]
[_1_1[1 (xa, 1)s(vilei, vi)]
[s0(¢o __lzlwi)}

%o
[TT to(ron)]
k=1

I s

T I] t>1(rinle:, class (7i1))]

i=1k=2

L
T I] Dir(min)]

i=1k=1

where:

4(i,14") is the Kronecker delta function which is equal to 1 i i’ and O otherwise.

pi is the position of the closest English head word to the lethefword at or O if there is no such
word.

class(e;) is the word class of the English word at positignclass (f;) is the word class of the
French word at positiop, class (f;) is the word class of the French head word at posijion

po andp, are parameters describing the probability of not genegatind of generating a single target
spurious word from each non-spurious target wegdy p; = 1.
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l
m =" (3.4)
i=1

so(tolm’) = (Zf )pgn’-%p;l’o (3.5)
0
dl (.7 — Cp; |Class(e,,i), CIaS% (Tik))
ifk=1
Dy(j) = § U Tl m) (36)
ds2(j — mip—1|clasg (ix))
if k> 2
l
i'=1
[ ceiling(ShL, ma /) i #£0
C’{o = if ;= 0 (3.8)

3.2.3 Other Alignment Structures are Special Cases

The alignment structure used in many other approaches caoteled using special cases of this frame-
work. We can express the 1-to-N structure of models like Mddey disallowingy; = —1. For 1-to-1
structure we both disallow; = —1 and deterministically set; = x;. We can also specialize our gen-
erative story to the consecutive word M-to-N alignmentsduge‘'phrase-based” models, though in this
case the conditioning of the generation decisions woulduiie glifferent. This involves adding checks
on source and target connection geometry to the generéime $hese checks would check whether the
phrase-based constraint is violated. If it is violatediltfi'e” would be returned. Naturally this would be
at the cost of additional deficiency.

3.2.4 Symmetricity

The LEAF generative story is symmetric, and so the sameralgm structure can be used to evaluate the
model in the French to English, or in the English to Frencledion. In practice, we will estimate the
model in both directions, and in unsupervised training wik mvaximize likelihood in both directions.
When determining the Viterbi alignment, we sum the log co$tthe model in both directions. We
discuss unsupervised training in the next section.

3.3 Unsupervised Training

3.3.1 Training LEAF Using Expectation-Maximization
3.3.1.1 Introduction

In this section we present the training of LEAF using the Exaon-Maximization algorithm. Expectation-
Maximization (Dempster et al., 1977), or EM, is an algoritfanfinding parameter settings of a model
which maximize the expected likelihood of the observed dredunobserved data (this is called the
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complete data likelihood; the incomplete data likelihoedhe likelihood of only the observed data).
Intuitively, in statistical word alignment, the E-step msponds to calculating the probability of all
alignments according to the current model estimate, whiéeM-step is the creation of a new model
estimate given a probability distribution over alignmefwhich was calculated in the E-step).

3.3.1.2 E-step

In the E-step we would ideally like to enumerate all poss#tignments and label them with( f, ale).
However, this is not possible when using a word alignmentehad complex as LEAF. As we will see
below in the discussion of the M-step, we would at least ldkértd the most likely alignment of a pair
and f given the model. This is the Viterbi alignme#tin this formula:

a = argmax Py(ale, f) = argmax Py(f, ale) (3.9)

This is a repeat of equation 3.3 which represents the taskdaififj an approximate Viterbi alignment
to output as the final alignment output from the alignmentpss. Here, in Equation 3.9 we are referring
to the search for an alignment during training. We can vaiy tih be, for instance, the search for the
10 most probable alignments (where a posterior distributieer the 10 alignments would be used for
updating the model in the M-step).

Unfortunately, there is no known polynomial time algorittiar finding the Viterbi alignment of
LEAF, or even for determining that a particular alignmentis Viterbi alignment. We assume that this
is intractable. A similar problem (the calculation of theérbi alignment for IBM Model 4) was proven
to be NP-hard by Udupa and Maji (2006). So we take the mostatlebalignment we can find, and
assume it is the Viterbi alignment. The algorithms used tgesthis search problem are discussed in
Section 3.4.

3.3.1.3 M-step

For the M-step, we would like to take a sum over all possikignahents for each sentence pair, weighted
by P(ale, f) which we calculated in the E-step (note that the alignmexiisled with probabilities in the
E-step must be renormalized to sum to 1 for each pair, as they are estimates Bf f, ale), and we
would like estimates oP(ale, f)). As we mentioned, this is not tractable.

We make the assumption that the Viterbi alignment can be wsepldate our estimate in the M-step
(which we callpy, (ale, f), the probability of the alignment given the sentea@nd the sentencgé):

1 fa=a

Note that we are abusing the term “Viterbi alignment” to méanbest alignment according to the
model that we can find, not the best alignment according tonthéel that exists.

Although in our experiments we use Viterbi training, neightood estimation (Al-Onaizan et al.,
1999; Och & Ney, 2003) , “pegging” (Brown et al., 1993) or soother means of creating a set of
candidate alignments (whose probabilities are then nazedhto sum to one) could be used instead in
the M-step.

We estimate new parameters from the Viterbi alignmentsdaluring the E-step by simply counting
events in the Viterbi alignments, since they are assumeduaten 3.10 to be the only alignments of
non-zero probability. We are interested in the counts ind&bl which we simply count im. After
collecting the counts, for each condition, we normalizeséheounts so that the conditional probabilities
sum to one, which provides us with the model estimate whithegsesult of the M-step.
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cq(xilei) source word type

cu(Ailclass(e;)) head word links (collected if; = —1)

¢ (filed) head word translation

cs(Wilei, vi) number of words in target cept

Cso (V0| D, i) number of unaligned target words

o (f5) identity of unaligned target words

i, (fjles, class,(1i1)) non-head word translation

cq, (Ajlclass(e,), clasg(f;)) | movement of target head words

ca, (Ajlclass (f;)) movement of left-most target non-head word
ca.,(Ajlclass (f;)) movement of subsequent target non-head words
(same counts, other direction

Table 3.1: Counts used in unsupervised training of LEAF

The Viterbi training approximation is related to EM traigirwhich tries to maximize the complete
data log likelihood. Neal and Hinton (1998) analyze apprate EM training and motivate this general
variant. In future work we would like to try using a probatyilestimate over a larger set of hypothesized
alignments to reestimate the model, but finding a set to usehwtelps performance of the estimated
models is an open research problem.

3.3.2 Bootstrapping

The term “bootstrapping” refers to how we initialize the rebdn order to perform unsupervised training
of our new model we require an initial probability distrilmrt over alignments. In practice, instantiations
of the EM algorithm (including approximate variants) staith a pseudo-M step, where we estimate an
initial “iteration 0" model estimate, before the first fuleration of EM. For example, the IBM Models
(Brown et al., 1993) were originally specified as a sequehgeoeasingly complex models which boot-
strap from one another in this fashion. The iteration O estinis calculated using the counts necessary
for our current model. However, these counts are collected the alignment distribution (the set of
alignments and their probabilities) estimated using tle®ipus model in the bootstrapping chain. In our
work, we use Model 1 to start with, bootstrap the HMM Model gebet al., 1996) from Model 1, and
then bootstrap LEAF from the HMM Model.

To initialize the parameters of the generative model fofitiseiteration, we use bootstrapping from a
1-to-N and a M-to-1 alignment. We use the intersection oflttte-N and M-to-1 alignments to provide
likely candidates for the head word relationship, the Ntalignment to delineate likely target word
cepts, and the M-to-1 alignment to delineate likely souroedicepts.

A key concept in our bootstrapping algorithms is whetherratiai alignment is feasible under the
new model or not. Feasible means that we could set the paasettings for the model such that
this alignment will have probability greater than zero unthe model. Infeasible means that no such
parameter settings exist.

A problem arises when we encounter infeasible alignmentstre where, for instance, a source
word generates target words but no link between the targedsvand the source word appears in the
intersection, so it is not clear which target word is the ¢atgead word. To address this, we consider
each of the N generated target words as the target head wanthiand assign this configuration 1/N of
the counts.
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3.4 Search

For each iteration of training we search for the Viterbi aligent for millions of sentence pairs. Evidence
that inference over the space of all possible alignmentstiadtable has been presented, for a similar
problem, by Udupa and Maji (2006). Left-to-right hypotlsesitension using a beam decoder (as is
typically implemented in phrase-based SMT decoders) ikelylto be effective because in word align-
ment reordering can not be limited to a small local window aadhe necessary beam would be very
large. We are not aware of admissible or inadmissible seagahistics which have been shown to be
effective when used in conjunction with a search algoritfmmilar to A* search for a model predicting
over a structure like ours. Therefore we use a simple lo@atbealgorithm which operates on complete
hypotheses.

Brown et al. (1993) defined two local search operations feirth-to-N alignment models 3, 4 and
5. All alignments which are reachable via these operatiom® the starting alignment are considered.
One operation is to change the generation decision for achneord to a different English word (move),
and the other is to swap the generation decision for two Frevards (swap). All possible operations
are tried and the best is chosen. This is repeated. The seamiminated when no operation results in
an improvement. Och and Ney (2003) discussed efficient im@fation.

In our model, because the alignment structure is richer, efi@el the following operations:

e move French non-head word to new head

e move English non-head word to new head

e swap heads of two French non-head words

e swap heads of two English non-head words

e swap English head word links of two French head words
e link English word to French word making new head words

e unlink English and French head words

These operations are defined and discussed further in theseetion. Germann et al. (2004) and
Marcu and Wong (2002) introduce some similar operationbaut the head word distinction.

3.4.1 Implementing the Search Operations

We now define the seven operations which transform an alighméo an alignmentz’. For each
operation we begin by copyingto a’ and then apply the operation ehas specified. The four operations
which are applied to non-head words are in Figure 3.2 andhtlee bperations applied to head word links
are in Figures 3.3 and 3.4. Note that the operations appiedn-head words are similar to the word
level operations in Model 4. The operations applied to heart links are like the operations in phrase-
based alignment such as those defined by Marcu and Wong (2002)

In implementing the search algorithm, we represent an ml@gna as a vectog:, a vectorb and a
vectorh. b; is used to indicate the target head word for the target woptsition, just asy; indicates
the source head word for the source word at positidry indicates which source head word at position
i generated the target head word at positioh; = 0 if the word at positiory is not a head word. If the
source word at positiohis deleted we seat; = 0. Likewise, if the target word at positiohis spurious,
we seth; = 0. We also define the function if) which returns the positiopfor whichh; = i or returns
0 if there is no such position.
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OPERATION 1: move French non-head word
Given: target word positiong, ;'
if b; # j andb;, = j' then
let bj = jl
end if

OPERATION 2: move English non—head word
Given: source word positions &’
if u; # 1 andu; =4’ then
let Wi = i
end if

OPERATION 3: swap French head word decisions of two French no—head words
Given: target word positiong, j/
if b; # j andb;, # j' then
swapb; andb;
end if

OPERATION 4: swap English head word decisions of two Englismon—head words
Given: source word positiong i’
if u; # 1 andu; # i’ then
swapy; and
end if

Figure 3.2: LEAF search operations: move and swap non-headsw

For comparison we note that for 1-to-N models an alignmei# often represented as a vector
wherew; indicates the position of the source word which generatedalyget word at positior, and
v; = 0 if the target word is spuriously generated.

We try all possible values of the parameters (see the lin@ei®iin each operation). Note that
“unlink source and target head words”, Operation 7 in Figlire has 3 parameters, rather than 2. To
control complexity we restrict the total number of modifidi@jaments considered reachable from an
alignmenta by applying this operation. This is done by placing restrits on the parameteiisand
J,» which specify the location of the head-words with which gs@ciate the former head words (and
non-head words previously associated with these formed @ads). We only allow for association
with nearby head words, or for changing the type of affectedee words to “deleted” source word, or
affected target words to “spurious” target word.

3.4.2 Search Algorithms

Any search algorithm trying to find the Viterbi alignment aoding to the LEAF model is trying to solve
a problem which is most likely intractable. We must align aagnas 10,000,000 sentence pairs for a
single iteration of training (given the data sets we haveaptesent time).
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OPERATION 5: swap English head word links of two French head vords
Given: target word positiong, j/
if b; = j andb;, = j' then
swaph; andh;
end if

OPERATION 6: link English word to French word

{after this operation is performed, source woahd target worg are both head words
Given: source word position, target word position

letj’ = inv(i), leti’ = h,

if i/ #£ 0 then
for i/ =1..1do
if Wi = i’ then
let Wi =1
end if
end for
end if
if j/ # 0then
for 7 =1..m do
if bj» = 7' then
letb;» = j
end if
end for
end if
let hj =1

Figure 3.3: LEAF search operations: swap and link head words

To control memory usage, which would be a problem with anycdealgorithm, we have developed
a technique where we restrict the memory used to the paresneteneed for a small number of parallel
sentences at a cost of refiltering the parameters each tinheade small group of parallel sentences to
align.

Because of the time tractability issues, we use a hillcligldbcal search. Local search does have
one advantage over search algorithms which rely on hypisteetension, which is that we are always
operating on a complete hypothesis. This makes integrafiorew knowledge sources easier, and in
particular allows for knowledge sources which can only berest over a complete hypothesis, which
would be difficult to use if our search involved partial hylpesis extension.

3.4.2.1 Basic Search Algorithm

In the basic search algorithm, we start the search from #irsjaalignment (for which we use the best
alignment from the previous iteration) and exhaustivehetch of the operations in Figures 3.2, 3.3 and
3.4 with all possible values for the parameters. We rememhéh resulting hypothesis was the best,
to use as the starting point in the next iteration of searahtéminate the search when no improvement
in model score via the search operations in Figures 3.2,i83al is possible.
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OPERATION 7: unlink the link between an English head word and a French head word
{non-head words whose head words are Frghei Englishk;, would be “orphanedf
{parametet is the English head word (or NULL) to which to attach the Eslglhead-word aft;, and
any non-head words attached/tp }
{parametey is the French head word (or NULL) to which to attach the Frelmead-word ag’ and
any non-head words attached;td}
Given: target word position)’, source word position, target word position
leti = hj
if i # 0 andy; =i andb; = j then
let uyy =4 andb;j, = j andh; =0
for # = 1..ldo
if i = 7' then
let i = )
end if
end for
for j” =1..m do
if bj// = j/ then
let bj// =7
end if
end for
end if

Figure 3.4: LEAF search operation: unlink head words

3.4.2.2 New Alignment Search Algorithm

We developed a new alignment algorithm to reduce the nursesearch errotsnade by the basic search
algorithm and directly control the time taken:

e The alignment search operates by considering completethgpes so it is an “anytime” algo-
rithm (meaning that it always has a current best guess). rEiwen therefore be used to control
processing, and we set these based on the product of theesmddarget sentence lengths.

e Alignments which are selected as the starting point at amgtibn during a single run of the search
algorithm are marked so that they can not be returned to atieefpoint in the same search run.

e We perform a hillclimbing search (as in the baseline algonit but as we search we construct a
priority queue of possible other candidate alignments twsimter (i.e. the second, third, etc best
alignments seen). The search is restarted by drawing thechedidate from this queue after a
timer expires. When calculating Viterbi alignments for timire training corpus we have found it
effective to set such a timer 5 or more times, increasingithe limit each time.

The first improvement is important for restricting total &msed when producing alignments for
large training corpora. The latter two improvements arateg to the well-known Tabu local search
algorithm (Glover, 1986).

A search error in a word aligner is a failure to find the begjratient according to the model, i.e. in
our case a failure to maximize Equation 3.3.
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SYSTEM KNOWN SEARCH ERRORS%
ARABIC/ENGLISH OLD 19.4
ARABIC/ENGLISH NEW 8.5
FRENCH/ENGLISH OLD 32.5
FRENCHENGLISH NEW 13.7

Table 3.2: Comparison of New Search Algorithm with Old Skaktgorithm for Model 4 Alignment

3.4.2.3 Comparing the Two Search Algorithms

One issue of major importance in using local search is thefelrontrol of search errors. A search error
is a failure to find the Viterbi alignment under the currentdabestimate and in a basic hillclimbing
search it means that the search ended in a local probabigyma?.

We present an experiment comparing our two search algasifomthe Model 4 search task. We
apply it a French/English task and to an Arabic/English tabke directions evaluated are the French
to English and Arabic to English generational directions &gply both algorithms using the Model 4
search operations described in Appendix A. For each corgusampled 1000 sentence pairs randomly,
with no sentence length restriction. Model 4 parameterseatenated from the final HMM Viterbi
alignment of these sentence pairs. We then search to trydeHf@Model 4 Viterbi alignment with both
the new and old algorithms, allowing them both to processhfersame amount of time.

Our experiment evaluates the number of search errors maatgthe baseline search algorithm and
the new search algorithm. The percentage of known searotsésithe percentage of sentences from our
sample in which we were able to find a more probable candidasgpplying our new algorithm using
24 hours of computation for just the 1000 sample sentenedse B.2 presents the results, showing that
our new algorithm reduced known search error8.5¥ for Arabic to English and 3.7% for French to
English. This shows that the new algorithm is more effedtian the baseline search algorithm.

3.5 Experiments
3.5.1 Data Sets

We perform experiments on two large alignments tasks, fabA&/English and French/English data sets.
Statistics for these sets are shown in Table 3.3. All of thta daed is available from the Linguistic Data
Consortium except for the French/English gold standaghatients which we annotated ourselves (and
are available from us).

3.5.2 Experimental Results

To build both our baseline and the contrastive alignmentesys, we start with 5 iterations of Model 1

followed by 4 iterations of HMM (Vogel et al., 1996), as impiented in GIZA++ (Och & Ney, 2003).
For the LEAF word classes, we use the same set of classes bhadbkne system. 50 classes are

used for each language. The classes are determined usitmkbls” program which is supplied with

2A search error could also mean that we had an error in the mgai¢ation of our search algorithm,
but we are confident that over the course of experimentatmhave effectively removed such errors.
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ARABIC/ENGLISH FRENCHENGLISH
A | E F | E
SENTS 6,609,162 2,842,184
TRAINING WoORDS | 147,165,003 168,301,299 75,794,254 67,366,819
VocAB 642,518 352,357 149,568 114,907
SINGLETONS 256,778 158,544 60,651 47,765
SENTS 1,000 110
ALIGN DIscRr. WORDS 26,882 37,635 1,888 1,726
LINKS 39,931 2,292
SENTS 83 110
ALIGN TEST WORDS 1,510 2,030 1,899 1,716
LINKS 2,131 2,176
TRANS. DEV SENTS 728 (4REFERENCES 833 (LREFERENCH
) WORDS 18,255 22.0Kro 24.6K 20,562 17,454
TRANS. TEST SENTS 1,056 (4REFERENCES 2,380 (1REFERENCH
) WORDS 28,505 35.8Kro38.1K 58,990 49,182

Table 3.3: Data sets

GlZA++. This program starts with a random assignment of tloeds in a monolingual text to the 50
monolingual classes and then greedily maximizes the likeldl of the monolingual text according to
a class-based bigram model by moving words to differentselasis described by Och (1999). In our
experiments the classes used for the head classes, glaaseshe same as those used for all French
words, classes

For non-LEAF systems, we take the best performing of the 8dhi“Refined” and “Intersection”
symmetrization heuristics (Och & Ney, 2003) to combine tie-N and M-to-1 directions resulting in
a M-to-N alignment. Because these systems do not output linked alignments, we fully link the
resulting alignments. The reader should recall that thesdwot change the set of rules or phrases that
can be extracted using the alignment.

We compare the unsupervised LEAF system with GIZA++ Modeb give some idea of the per-
formance of the unsupervised model. We made an effort tonigei the free parameters of GIZA++,
while for unsupervised LEAF there are no free parametersptonize. A single iteration of unsuper-
vised LEAF is compared with heuristic symmetrization of @#z's extension of Model 4 (which was
run for four iterations). LEAF was bootstrapped as descrineSection 3.3.2 from the HMM Viterbi
alignments. Note that the timings for the first E-Step of theneh/English experiments are presented in
Appendix C.1. The current (unoptimized) LEAF search impatation is slow; speeding up search is
discussed in the same appendix.

Results for the experiments on the French/English datareetteown in Table 3.4. We ran GIZA++
for four iterations of Model 4 and used the “Refined” heucigline 1). We observe that LEAF unsuper-
vised (line 2) is competitive with GIZA++ (line 1).

Results for the Arabic/English data set are also shown iheTald. We used a large gold standard
word alignment set available from the LDC. We ran GIZA++ fouf iterations of Model 4 and used
the “Union” heuristic. We compare GIZA++ (line 1) with onestiition of the unsupervised LEAF
model (line 2). The unsupervised LEAF system is worse thaniterations of GIZA++ Model 4. We
believe that the features in LEAF are too high dimensionais®e for the Arabic/English task (which is
more difficult than the French/English task) without thelbaffs available in the semi-supervised model
which we will discuss in Chapter 4.
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FRENCHENGLISH

ARABIC/ENGLISH

SYSTEM F-MEASURE(a = 0.4) | F-MEASURE (o = 0.1)
GIZA++ 73.5 75.8
LEAF UNSUPERVISED 74.5 72.3

Table 3.4: Experimental Results

We will return to these experiments in Chapter 4 to compagepttrformance of our unsupervised
systems with the semi-supervised systems presented therarticular, we will present a discriminative
model based on sub-models directly derived from the LEAFegative story which we will train using
a semi-supervised training algorithm.

3.6 Previous Work

The LEAF model is inspired by the literature on generativelaelimg for statistical word alignment and
particularly by IBM Model 4 (Brown et al., 1993). Because loist we begin our discussion of previous
work in generative modeling with the most widely used aligminstructure, the 1-to-N structure, which
is that used by the IBM Models and the HMM word alignment modéle then continue with other

structures, discuss additional issues and conclude.

3.6.1 Generative Models of 1-to-N Structure

The 1-to-N structure is not the best alignment structure t8e discussion in Section 1.2.4 and partic-
ularly Table 1.6 on Page 5 for an analysis of two example [gsgntences which shows that there are
interesting minimal translational correspondences whahnot be modeled using this structure.

Most 1-to-N models have the advantage that their parametarse robustly estimated from rel-
atively small amounts of data. While such models can not threccount for M-to-N discontinuous
correspondence, they can use word deletion, where a soordegg@nerates nothing (sometimes referred
to as “zero fertility” for reasons which will become apparimnthe discussion), to try to reduce the effect
of this by allowing all of the source words which should appeaa M-to-N relationship to be deleted
except for one source word which generates the N target wiof@ien models with this structure do
a good job of accounting for the cepts in the target langubagepbustly decomposing the probabili-
ties associated with these cepts into word level probasliand in practice these models can even deal
with discontinuous target cepts well. Given decisions alanget cepts taken from a 1-to-N alignment,
and source cepts taken from a N-to-1 alignment, heuristdosbe applied which attempt to generate a
M-to-N discontinuous alignment of reasonable quality.

In practice, the main disadvantage of this alignment stinedgs the need for heuristic symmetrization
in order to obtain M-to-N discontinuous alignments. Helizisymmetrization was introduced by Och
and Ney (2003) and extended by Koehn et al. (2003). The clafisgmmetrization heuristic which is
most effective changes from task to task. It is not only deépahon the language pair being aligned, as

3However, In general many variants approximating an M-to4Nimal translational correspondence
will be possible. For instance if M=N such a model will oftdiga the words 1-to-1. But it is important
to remember that none of these variants is correct and itsig &afind contexts where the translation
rules licensed by such variants would be harmful.
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well as the translation direction of the final translatiosktabut it is also dependent on the training data
size (for instance, see the graphs in Chapter 2 on page 1ferdix A contains further information
on heuristic symmetrization, including specific detail$hofv it is used in our baseline. LEAF does not
require use of these heuristics.

We now discuss specific 1-to-N alignment models, beginniitly thie IBM models.

3.6.1.1 The IBM Models

Brown et al. (1993) developed five statistical models of gtaton, IBM Models 1 through 5, and

parameter estimation techniques for them. These modelsealthe 1-to-N alignment structure. The
models were designed to be used in a pipeline, where eachl isooeotstrapped from the previous
model.

Model 1 is the first model in the pipeline. It makes very strongditional independence assumptions
on word placement and generation (all French words are gitkeand placed independently). Three
probability distributions are involved in generating a el sentence from a English sentence using
steps which define an alignment. These are a distribution theelength of the French sentence, a
distribution over the alignment decision for each Frenchidyposition (denoting the position of the
English word which generated it), and a distribution over titanslation decision (which stochastically
selects the lexical identity of the French word given thelshgvord which generated it).

The formula in Model 1 for the joint probability of an alignmteand a French string, given an
English string, is in Equation 3.11. Note the three comptsmenthe model. The length distribution
is the numerator of the term before the product. The aligrimpesition model is simplyt /(1 + 1)™, a
uniform distribution over the English positions (includiposition0 which if selected would indicate that
the French word is spuriously generated). The translatiodehis inside the product so it is evaluated
once for each of the: French words.

PUf.ale) = P 7 Lotk (3.11)

When Model 1 is trained to maximize likelihood using EM theelikood is convex, but in practice
Och and Ney (2003) suggest that stopping before convergeaesases performance. The estimation of
the parameters for a single iteration can solved withoutraptex search operation, and the calculation
of the Viterbi alignment for a fixed and f is trivial (the highest generation probability for each riale
word is selected). This makes Model 1 a popular choice foliegtons which do not require a strong
model of translational correspondence but instead a rooagjation of whether two sentences should
be considered parallel, such as sentence alignment (M2002). Model 1 is also used as a smoothing
method for higher order translation models (Och et al., 2004

Model 2 relaxes one of the assumptions of Model 1, by makimglaation of the English word
which generated each French word dependent on the absodatitohs of the two words. The equation
for Model 2 is in Equation 3.12. The first term is again the tbndjstribution. Within the product, the
first term is the alignment position model (the conditionallability that the French word at positign
is generated by the English word at positioy). The translation model is identical with Model 1. Like
Model 1, the estimation of the parameters for a single it@matan solved without a complex search
operation, and the calculation of the Viterbi alignment Isoasimple (the product of the alignment
position model and the translation model is simply maximifeg each French word in turn).

P(f.ale) = p(mll) H (a;15,1,m)p(filea,) (3.12)
Jj=1
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Models 1 and 2 are both weak models of translational corredgrace which were designed to be
used for bootstrapping Models 3, 4 and 5. The advantage stthedels is the tractability of both
estimating the models and making predictions using the tsode

Models 3, 4 and 5 are considerably more complex. These matketiiscussed in detail in Appendix
A. They are referred to as the “fertility” models. An Engliglord’s fertility is the number of French
words generated by it. The use of a fertility model requimsiting the alignment position model.
Models 3 and 4 use a simple alignment position model whidloéhices deficiency into the estimation.
Deficiency means that the model wastes probability mass edigiions which are impossible. In this
case the deficiency lies in the placement decisions for remmeds (an example is that the probability
that two French words are placed in the same position can ia&®). Och and Ney (2003) presented
evidence that this form of deficiency is not a problem in pcact

Model 3 introduces the “fertility” distribution. The aligment model still uses absolute positions as
in IBM Model 2, but is inverted so that we calculate the pralighbof placing a French word given an
English word’s position (rather than vice versa, as was #se dor Model 2). Model 3 is not generally
used in practice. The reader interested in Model 3 is raleiwehe Model 3 tutorial (Knight, 1999),
which is also good background for understanding Model 4 (el$ & providing a good first view of
statistical word alignment and SMT in general).

The good performance of Model 4 is the basis for the work onetind in this thesis, and Model 4
is used in much of the work in Statistical Machine Translapaoblished in the last several years. Model
4 is a generalization of Model 3 where the alignment modes uskative positions rather than absolute
positions. The alignment model is again inverted from tis&tdiby Model 1 and Model 2. The reader is
referred to Appendix A for a full presentation of Model 4 inding a discussion of the generative story
with examples. LEAF suffers from the same deficiency as Mddeid introduces additional deficiency
in the source non-head word linking decisions, but we hage s@ evidence that this causes problems
in practice.

Model 5 is the last model in the chain of IBM models. Model 5iisitar to Model 4, except that
Model 5 is not deficient. Model 5 is not typically used becaasgeiding the deficiency of Model 4
requires a much larger number of parameters than Model 4amasbecause Model 5 has not been
shown to perform better than Model 4, despite Model 4’s defficy (Och & Ney, 2003).

The advantages of Model 4 over Model 1 and Model 2 come frormtbee powerful model which
better captures translational correspondence, but tihies@t a high price. Both estimation and search
over the full distribution of alignments becomes intratdaldn practice, a local hillclimbing search is
used during the E-step (as discussed for Model 4 in Append&2, note that this is similar to the
“basic” search algorithm used with LEAF discussed in Sec8a), to find a small set of probable
alignments, and the model is re-estimated using only thi¢i.ge with the assumption that alignments
outside this set have probabili®y. LEAF also requires local hillclimbing search and re4astiion from
a small set of probable alignments.

The unsupervised baseline in this thesis involves firstimgiModel 1, then training the HMM word
alignment model (the HMM has similarities to Model 2 but perfis better than Model 2; it is described
in the next section), and then Model 4. Appendix A includesasgntation of the baseline unsupervised
system which uses the GIZA++ implementation of Model 4 inhbdirections (the 1-to-N direction
and the M-to-1 direction), followed by the application ohayetrization heuristics to produce the final
M-to-N discontinuous alignment.

LEAF improves on Model 4 by providing a generative story whadlows the modeling of M-to-N
discontinuous alignment structure rather than the 1-terictire modeled by the IBM Models. This is
a better structure of translational correspondence thatmtlhdeled in the IBM models. In practice, this
means that LEAF has the important advantage that it doegqoire heuristic symmetrization and is able
to model the full range of translational correspondenceanganterested in directly. LEAF can provide

38



a posterior distribution over likely M-to-N discontinuoasignment hypotheses, which is impossible
to obtain from Model 4 without using both symmetrization tistics and heuristic combination of the
1-to-N and M-to-1 posterior probabilities.

3.6.1.2 HMM Word Alignment Models

Much of the additional work on generative modeling of 1-tavdrd alignments is based on the HMM
word alignment model (Vogel et al., 1996), which is itselfengralization of ideas presented by Dagan
et al. (1993). The HMM word alignment model uses an alignnmeodlel which has relative positions,
like IBM Model 4, rather than using an alignment model invoty absolute positions which are used
with models like IBM Model 2. We observe the French words, chihére the emissions of the HMM,
and we know that there afestates, the English words. The transition parameters edebi distance.
For example, suppose we already emitted the French wordsitiggoj from statei. The transition
probability of transitioning from stateto i’ (which would mean that we would emit the French word at
position; + 1 from ¢’) is conditioned on the signed distanite- i.

Many research groups are interested in the HMM because ibeagifficiently trained using the
Forward-Backward algorithm, and inference is also trdeta®ne important difference with Model 4
is that the HMM does not have a fertility distribution. Thetiiéty distribution is important to the good
performance of Model 4, and there have been several attémptdeast partially overcome the lack of
a fertility distribution in the HMM (without losing the befits of tractable inference) as we will discuss
further below.

Och and Ney (2003) presented extensions to the HMM word @iém model which allow NULL
(which emits spurious target words) to be modeled usiadditional states (recall thats the length of
the English sentence). The choice of this state encodegiton: of the previous non-NULL English
word (the state from which we transitioned into a NULL staf®)is allows the appropriate NULL state
to “remember” the previous non-NULL English word, so thainsition probabilities out of the NULL
states can be based on the previous English word. If this n@rdone, and we have only one NULL
state, this state would “forget” where in the English seagethe last non-spurious word was emitted
from. This formulation adds one additional free parameter,probability of a jump to the appropriate
spurious word state (in fact, the formulation requitdeee parameters, but in practice these are tied).
An additional free parameter is used to control an intetmmeof the relative position alignment model
with a uniform position alignment model, which is used to stinthe relative position alignment model.
These two parameters must be optimized on held out data. aktipe, we have found the parameter
controlling the jump to the NULL states to be particularlypiontant for good performance. Och and
Ney (2003) also proposed lexicalizing the non-NULL jumplmbilities with word classes to create a
class-based HMM.

Toutanova et al. (2002) and Lopez and Resnik (2005) presgentariety of refinements of the HMM
word alignment model particularly effective for low datanditions. Toutanova et al. (2002) reported
on extending the HMM word alignment model in three ways: g$M®S-based translation probabilities,
making the jump to NULL dependent on the identity of the Estglivord and conditioning the generation
of spurious French words on the following French word. Loped Resnik (2005) introduced syntac-
tically motivated jump distance features based on the mtistavithin a dependency parse and improved
initialization of both the translation and alignment pmsitmodels.

The model which was presented by Deng and Byrne (2005) is eem&®n of the HMM which
modifies the HMM to be able to emit a phrase of words at eack $tatall that a state is an English
word). Optionally, a word-level bigram formulation can be&ed to model which words are in a phrase,
otherwise a word-level unigram model is used. A free paramsgtsed to tune whether longer or shorter
phrases are desired. Like the extension of the HMM presdnté€dch and Ney (2003), the state space is
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multiplied by two to model spurious target generation (tjtohere we are referring to spurious phrases
rather than spurious words), and the probability of outpgta spurious phrase is a free parameter. To
more robustly model the alignment position distributioinaar interpolation of the usual HMM relative
position model is performed with an absolute position mdtieé Model 2's alignment model) and

a simple uniform position model. This interpolation of thebree quantities introduces another two
free parameters. These four free parameters must be optimgainst held out data, which, given our
experience with the HMM, is likely to be important to perfante. The structure modeled by Deng
and Byrne (2005) is 1-to-N. When trained in both training dii@ns (using different settings for the free
parameters of the two directions), the improvements in tbdehwere competitive with Model 4 (for
the special case of monotone translation). However, tlge&iimprovements were obtained by using a
technique which “second guesses” the final symmetrizedhiadént, which is easier to do with models
which support exact inference (like the HMM) than with LEAF Model 4. This “second guessing”
provides translations for phrases which were not coveretidgymmetrized alignment, we will discuss
this in detail in Section 3.6.7.

3.6.1.3 Discussion

Model 4 and the HMM share one important characteristic. Twdering models (also called “dis-
tortion” models) use relative positions, i.e. that thera igreater than zero order dependency on word
placement. The “homogeneous” HMM word alignment model hrstorder dependency (the position
of the next placed word is conditioned only on the positiothefpreviously placed word). The extended
HMM word alignment model of Och and Ney (2003) remembers tleation of the previously placed
non-NULL word. Model 4 conditions the alignment model on kheation of the previous “cept center”
for the first word (from the left) generated from an Englishréhoon the position of the previous word
generated from an English word if the word being placed isteffirst word generated, and also uses
word classes (see Appendix A for more details). These maygiear to be successively more power-
ful. LEAF uses a similar ordering model to Model 4 with the ioniant difference that the distortion is
relative to explicitly chosen head wofds

The lack of fertility in the HMM is a strong difference with Mel 4. Toutanova argues for using a
probability of “staying” in a source word to try to indiregtinodel fertility. Deng and Byrne use phrase
length probabilities for each emission. Both of these cdmitectly model fertility because the state can
be returned to multiple times, but they may provide a usdhd twvhich partially makes up for the lack of
an explicit fertility model. Model 4's fertility model is ¢ main strength over the HMM, as it provides a
more robust global model of generation (e.g. in order for aglih word to generate words in two very
different parts of the sentence it pays both a distortiot aod a fertility cost; for the HMM this is just
a distortion cost which is easily offset by avoiding a low lpability translation). LEAF has an explicit
model of fertility which is similar to Model 4’s but is also nditioned orny which indicates whether the
source cept is a single word. We have experimented with tondig this decision as well on the word
class of the target head word, but found that performanceaded, indicating that such a distribution
can not be robustly estimated with the amount of data we otiyrbave availabl

In general, LEAF improves on the HMM by providing a genermttory which allows the modeling
of M-to-N discontinuous alignment structure rather thae fhto-N alignment structure modeled by
the HMM. As in the case of Model 4, the predictions of the HMMmdi@lignment model are 1-to-N,
which requires heuristic symmetrization of predictionbath training directions. However, an important

4The placement of the third and subsequent words in a cepats/eeto the placement of the previous
word, which is more similar to the modeling of distortion irohiel 4.
>One approach to remedying this might be to use fewer head elasdes, we currently use 50.
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difference with both LEAF and Model 4 is that HMM word alignntanodels support tractable exact
estimation and prediction, which explains their interesthie research community. We bootstrap both
LEAF and our baseline Model 4 system from the HMM as impleraéim GIZA++.

A disadvantage which both Model 4 and the HMM variants havedmmon is the existence of
several free parameters which must be optimized on heldatatid an expensive end-to-end heuristic
search which is either manually done, or often simply noedatrall (in which case parameters optimized
for a different task are used). Unsupervised LEAF has thamtdge that it requires no free parameters,
but this lack of direct control over important parametenstdbutes to poor performance if the bootstrap
distributions are not well estimated (this appears to becds®e for the unsupervised Arabic/English
experiment we reported in Section 3.5). In Chapter 4 we shfmwasmall number of parameters can be
trained using as few as 100 sentences of annotated data rtegral part of a semi-supervised training
process. This can be viewed as a practical way to avoid theiahaptimization process required when
using such free parameters while still obtaining the bemefisuch an optimization.

3.6.1.4 Other Generative Models of 1-to-N Structure

Moore (2004) reported on modifications to the training of IBMdel 1, which serve to improve the
quality of the Viterbi alignment of Model 1. Moore noted theging techniques which may reduce the
accuracy of the full distribution over possible alignmeintdavor of strongly sharpening the Viterbi
estimate, may be counter productive if the model is subsetyuesed to bootstrap, as is done with both
LEAF and our baseline. However, Moore motivated his work isgassing applications other than word
alignment which use Model 1, including sentence alignmittdre, 2002) in particular.

Och and Ney (2003) presented “Model 6”, which is a log-lineambination of Model 4 and the
HMM. The motivation for this combination is that the disiort (reordering) model for the HMM is
in the inverse direction of that of Model 4, and so combiningit predictions may be more robust. In
practice, Model 6 is not used to create alignments for sthatkeoart SMT systems. Symmetric LEAF
calculates a relative distortion model in both directicensg uses a differently parameterized model for
determining source non-head word to head word links (agdioth directions), so it captures this same
effect in a stronger fashion.

3.6.2 Generative Models of 1-to-1 Structure

Another popular choice has been to use the 1-to-1 alignnterdtsre. The discussion in Section 1.2.4
and particularly Table 1.6 on Page 5 shows that this straéstinadequate in accounting for translational
correspondence. However, search over this type of strigdtgimple. Wu (1997) and Melamed (2000)
and Cherry and Lin (2003) all used this structure. It is gasghat 1-to-1 alignment structure may be of
some interest for applications other than machine trapslatith a strong emphasis on precision, such
as the extraction of single word translation lexicons far isCross-Lingual Information Retrieval (Xu
et al., 2001), but further study is needed to determine verettis is in fact the case or whether the low
recall of 1-to-1 alignment approaches causes problems.

Wu (1997) invented hierarchical alignment, using operetion parallel binary trees, which were
modeled as hidden variables, and a word level lexicon tdbsitatranslational correspondence. This
allows for highly tractable estimation and inference, bag hot been used effectively to improve trans-
lation.

Melamed (2000) introduced “competitive linking” which i®auristically motivated combined mod-
eling/search approach which involves a greedy 1-to-1 niragcbf English and French words. Cherry
and Lin (2003) used a probabilistic model similar to Melar(@@D0) and two constraints, the 1-to-1 con-
straint and the no crossing dependencies (“cohesion”)t@nt Two sets of features are used in their
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model, “adjacency” features (which rewards groups of wéod€lustering together) and “dependency”

features (a word movement penalty based on dependencygaegated using the MiniPar dependency
parser). LEAF’s placement models encode knowledge sittal@herry and Lin’s non-syntactic features

here, but the syntactic features may capture a generaliz#iiat is of interest in the semi-supervised
approach we present in Chapter 4.

Yamada and Knight (2001) presented a tree-to-string al@inmodel. The model is trained using
English syntactic trees generated from a high quality sfit@arser and Japanese strings. A particular
generative story applies operations to the English treeteate the Japanese string, and this induces an
alignment. The operations on the tree allowed by the gewmerstory include three kinds of operations,
the reordering of English constituents within an Englishstduent phrase, translation actions mapping
English to Japanese, and insertion of NULL words. This meded not used to try to generate a good
Viterbi alignment, but instead to directly learn a goodrestie forp(fstring|€tree) which is then applied
during translation (translation is the recovery of an Esfgliree given a Japanese string), in conjunc-
tion with a language model which models the probability ofearglish tree. This model uses a 1-to-1
structure for the majority of the translation actions, whare translations of the leaves of the English
parse tree, but was later extended to allow phrasal tramstadf constituents in the parse tree (however,
this was not implemented in the alignment model). Gilded8@xtended this model to tree-to-tree
alignment and enhanced both tree-to-string and treestogenerative stories with an operation called
“clone” which allows models to be more powerful and less tedhe original tree structure (or struc-
tures). LEAF induces a roughly dependency-like relatigmam the links between a single head word
and multiple non-head words, but this is more semanticatifivated than syntactically motivated.

1-to-1 alignments make very few predictions, so they havéaa toward high precision but low
recall. Estimation (and prediction) using 1-to-1 aligningtnucture is highly tractable, but unfortunately
this structure is not a good choice for building MT systems wke showed in Chapter 2, the AER metric
unfairly favors high precision alignments, which has emaged research using this structure, but none
of this research has been shown to improve machine tramsiqtiality.

3.6.3 Generative Models of “Phrase-based” Structure

The phrase-based (consecutive word) alignment strucgralso been used in several alignment models,
though it is more often used in translation models. The disicun in Section 1.2.4 and particularly Table
1.6 on Page 5 shows that the phrase-based assumption isaBg@ood choice of alignment structure,
and we mention again that even phrase-based SMT models dperform ideally with alignments
generated using a phrase-based alignment structure.

3.6.3.1 General consecutive word alignment models

Marcu and Wong (2002) defined the Joint model, which modebedecutive word M-to-N alignments.
When used as a translation model, the Joint model is intagelsécause it uses a distribution over phrase
translations directly, rather than estimating it from ae¥fii alignment. The model has a strong memo-
rization capability and seems to match the assumptionstgitirase-based SMT closely. However, this
memorization capability leads to problems in generalkimasind in tractability. In the Joint model, unlike
in LEAF, overlapping phrases do not share parameters. Btarine, the probability of the French cept
“homme” translating to the English cept “man” is not dirgatélated to the probability of the French
cept “homme” translating as the English cept “the man”. Teéls to a large blow-up in the number
of parameters, causing the intractability problems, aaddeto poor generalization. The Joint model
also does not have the ability to deal with non-paralleligrhi¢h is annotated using NULL alignments
in most other translation models). Kumar et al. (2006) usedohrase-based version of the alignment
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templates translation framework of Och and Ney (2004) ttdan alignment model which is similar to
the Joint model.

The problem with the blow-up in parameter space involved odefs like the Joint model is ad-
dressed in LEAF by using the head word structure to allow tirage probabilities to decompose into
smaller units. In particular, this appears to provide a gtvade-off between robustness and expres-
siveness given the amount of training data currently abkdla The M-to-N discontinuous alignment
structure using the head word assumption is also fastera@is¢han a pure phrase-based structure as
the translation dependencies on one side are only depeodéhé head word on the other side (and
which is a flag indicating whether the cept on the other sidgains just one word). The decomposition
of costs using the head word assumption means that adding-beadl word to a head word is an op-
eration which incurs additional cost but does not causefal@other costs incurred by that cept to be
reevaluated. In phrase-based models any change to a cegscallicosts to be reevaluated. LEAF also
provides us with a path to easily increase the power of theainmyl simply reducing reliance on word
classes and further relaxing conditional independenaengs$ons.

3.6.3.2 Other “phrasal” models

Other alignment structures have been tried which are lgqsslasal. Wang and Waibel (1998) intro-
duced a generative story based on extension of the gereesabity of Model 4. The alignment structure
modeled was “consecutive M to non-consecutive N”, and thiarpaters were trained using EM. LEAF
has some similarities with this model in that they are botseblaon generative stories which are exten-
sions of Model 4. However, LEAF allows the full range of M{tbeliscontiguous alignments.

Tiedemann (2003) created an algorithm similar to Melamedrapetitive linking algorithm, but al-
lowing adjacent word connections. This structure has anitii¢s to the “Refined” heuristic symmetriza-
tion metric of Och and Ney (2003) which we discussed in ChapteA variety of features were used
including features based on POS tags and similarity hétgistVe will propose a semi-supervised train-
ing algorithm which could use these types of features in @hap

3.6.4 Generative Models of 1-to-N and M-to-1 Structure

Matusov et al. (2004) presented a model capable of modelitogNL and M-to-1 alignments (but not
M-to-N alignments) which was bootstrapped from Model 4. Téehnique used for bootstrapping is
to use state occupation probabilities. State occupatiobghilities can be exactly determined for the
HMM but only approximately determined for Model 4; this itves using a sample of the Model 4
posterior distribution which is calculated over a small aetlignments which are hopefully near to
the best alignment. We suspect that this is not more powtréun simply estimating a model directly
from the Model 4 Viterbi alignment (and could even be infexibut these two options have never been
directly compared. The state occupation probabilitieslae used in combination with the Hungarian
algorithm to solve a bipartite covering problem which desia 1-to-N and M-to-1 alignment. However
the decisions made are based only on the state occupatibalpliies which don’t model the global
context welf. Because of this, we doubt that using HMM or Model 4 state pation probabilities
would be as effective as bootstrapping LEAF from the HMM.

This is easiest to illustrate with an example. Suppose amatst of Model 4 prefers to assign the
French word at the beginning of a particular French sentamtee first English word 50% of the time
and the French word at the end of the French sentence to theBagtish word 50% of the time. This
can easily be captured in the state occupation probabilitiut this fails to capture any interaction
between these two alignment decisions. If the highly pribabignments which have the first French
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3.6.5 Generative models of M-to-N Discontinuous Structure

LEAF is the only general purpose alignment model which metikto-N discontinuous structure which
we are aware of. However, May and Knight (2007) defined a matieth can be used to re-align given
a high quality word alignment and an English parse tree. Woik uses the GHKM translation model
(Galley et al., 2006) as an alignment model.

May and Knight (2007) used this model to re-align from a stgralignment and a fixed parse tree.
The parse tree is treated as a fixed hard constraint. Firsivantory of treelet/alignment pairs is created
from the starting alignment and the fixed parse tree. Then &€hbkéd to find better treelet/alignment
pairs for maximizing the likelihood of the training data thevere originally used (note that all of the
treelet/alignment pairs considered for a particular sergenust have been observed in the starting min-
imal Viterbi derivation of either the sentence in questioradalifferent training sentence). Finally the
Viterbi treelet/alignment derivation is found for each tegrte pair. This work allows a generative model
to take advantage of syntactic information. However, it s@me of the same issues with overlapping
rules as phrasal systems do. This is partially addressedithiypg a “rule size” distribution which is
analogous to a fertility distribution (but is over rule sizgher than the number of words generated). We
would be interested in taking advantage of syntactic infiiiom in LEAF, but as the parse tree is not
perfect (it is generated by a probabilistic parser, whickesaerrors) we think the appropriate way to do
this would be to define syntactically motivated sub-modelsur semi-supervised formulation, which
will be discussed in Chapter 4.

3.6.6 Symmetrization

One important aspect of LEAF is its symmetry. Och and Ney 80@ented heuristic symmetrization

of the output of a 1-to-N model and a M-to-1 model resulting ik-to-N alignment, this was extended
by Koehn et al. (2003). Zens et al. (2004) introduced symimedrlexicon training. Liang et al. (2006)

showed how to train two HMM word alignment models, a 1-to-Ndmloand a M-to-1 model, to agree

in predicting all of the links generated, resulting in a 1ttalignment with occasional rare 1-to-N or
M-to-1 links. We have used insights from these works to helfiginine the structure of our generative
model.

Various models have attempted to gain the advantages df ttsise symmetrization heuristics, but
most have been required to deal with 1-best predictions {ibr state occupation probabilities). LEAF
uses the head word structure in a symmetric fashion insideeofienerative story, which seems to be a
better way to model the desired structure. In particulas,alows for a posterior distribution over more
than the 1-best alignment without the use of heuristics.

3.6.7 Different Rule/Phrase Extraction

The work reported in this thesis used translation systemshmxtract translation rules from a single
word alignment (Koehn et al., 2003). One promising area afidlation modeling research is work
on extracting translations rules from richer represeomatithan a single word alignment. The IBM
models (Brown et al., 1993) and the Joint model (Marcu & Wo2@)2) were designed to estimate
parameters (for 1-to-N and phrase-based translation modspectively) directly without requiring the

word aligned to the first English word never contain an alignbof the last French word to the first
English word (because the distortion probabilities inealvn making a placement at the beginning of
the French sentence and at the end of the French sentenced¥ generated from the same English
word are low), this interaction would be lost using stateupation probabilities.
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use of a Viterbi alignment. Venugopal et al. (2003) inverdgegeneralized technique for using lower
order alignment models such as Model 1 to generate phrasegiaén a source language test set and an
unaligned bitext.

Deng and Byrne (2005) described an approach which is usepast-process for finding translations
of phrases in a translation test set which did not have tatiosl candidates indicated in the symmetrized
alignment. This is a form of “second guessing” the symmettialignment. It involves using a modified
Forward algorithm for estimating the posterior probapilif each possible phrase pair (according to
symmetrically trained phrase-based HMM models). They tisiscapproach together with symmetrized
phrase-based HMM alignments to obtain improved BLEU scovesjust using the symmetrized phrase-
based HMM alignments. They also obtained improved BLEUe&swrhen using the posteriors calculated
over symmetric phrase-based HMM models to extract traosistfor phrases which were not covered
in symmetrized Model 4 alignments. The implementation @ tpproach requires the calculation of
guantities similar to the state occupation probabilitiedMatusov et al. (2004). This relaxation of
the Viterbi alignment assumption for phrasal or hierarahiale extraction seems to us to be a logical
extension of our current approach. Implementing this foAEEvould require modifications to the model
to allow it to generate the most probable alignment subethé constraint that at least one translation
of a certain phrase can be extracted; we will discuss ththduin Chapter 5.

3.6.8 Discussion

We have outlined some of the important previous work on wéighment. We chose to break this work
down by the alignment structure modeled, as our choice otterbalignment structure was critical to
the design of LEAF.

However, there are other dimensions on which we could exp@nd very important dimension is the
treatment of syntactic phenomena. In designing LEAF, weswnat only inspired by Model 4, but also
by dependency-based alignment models. We discussed sotime dépendency-based word alignment
models in the sections on 1-to-1, phrase-based and M-testbdiinuous structures. In contrast with
their approaches, we have a very flat, one-level notion oédéency, which is semantically motivated
and learned automatically from the parallel corpus. Théaidf dependency has some similarity with
hierarchical SMT models such as the Hiero model (Chiang5200

3.7 Summary

Our new generative model, LEAF, is able to model alignmeritielvconsist of M-to-N non-consecutive
minimal translational correspondences. We presentecdinergtive story and mathematical formulation.

We then discussed the training of LEAF using an approximaigeEtation-Maximization training
algorithm. We discussed the E-step, the M-step, and bagpisitig (performing the initial M-step).

We use a local search algorithm to search for likely alignimewe presented the permutation opera-
tors used and discussed how to use them in a basic hillclgrddgrorithm. We also derived an improved
hillclimbing algorithm using “Tabu” alignments and redtarand performed a simple experiment show-
ing that it is effective.

We conducted experiments on large French/English and &liahglish data sets which show that
LEAF is comparable with our baseline, GIZA++, when LEAF i@itred in an unsupervised fashion.

We then discussed the extensive body of previous work onrgéwe modeling of word alignment.
We broke the discussion down by the alignment structure teddith the two most important struc-
tures being the “1-to-N" structure as used in the IBM modatthe HMM, and the “phrase-based” (con-
secutive word) structure as used in phrase-based modelsomifasted LEAF's M-to-N non-consecutive
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alignment structure with both of these structures and dised the advantages of the head word assump-
tion, and in particular how this approach solves the phrssginentation problem of phrase-based mod-
els, where overlapping phrases cause problems with battabidity and robustness. We also discussed
two other issues, symmetricity and approaches to buildigstation systems which use more than just
the Viterbi word alignment.

In conclusion, we have found a new structure over which werchnstly predict which directly
models translational correspondence commensurate withithie used in hierarchical SMT systems.
Surprisingly, this is also a more suitable structure foregahphrase-based SMT systems than the phrase-
based alignment structure. Our model, LEAF, is comparalitle avstrong baseline when it is trained in
an unsupervised fashion. In Chapter 4 we will decompose L&Aderive the sub-models of a powerful
semi-supervised model and show that this model has signifjchetter performance than two strong
baselines.
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3.8 Research Contribution

We designed a new generative model which models the steuiofiihe word alignment problem directly.
We also developed a high performance distributed locatkesigorithm.
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Chapter 4

Minimum Error / Maximum Likelihood Training for Automatic
Word Alignment

4.1 Introduction

The technique of using labeled data and unlabeled datahgtgr training is called semi-supervised
training. We are interested in developing a semi-supetvisgning technique for the word alignment
problem: we have a large number of parameters to estimatega amount of unlabeled data, and a
small amount of labeled data. We have a structured genenatddel, LEAF, which can be trained in
an unsupervised fashion on the unlabeled data, and now wiel kel to take advantage of the labeled
data.

When we refer to labeled data for the automatic word alignrpestilem, we mean parallel sentences
for which a correct word alignment has been annotated by hamiénlabeled data refers to a pair of
sentences which we assume are parallel (as they were cheisgrasentence alignment program which
is known to have high accuracy in making this determinatiobnlabeled data do not have human
annotated word alignments associated with them, which iswéncall them unlabeled.

We first show how to discriminatively rerank the output of agetive model to minimize the errors
on the labeled data. We then present a new semi-supervaadhty approach called Minimum Error /
Maximum Likelihood training which incorporates steps whaternatively minimize error with respect
to the final performance criterion and maximize the liketid@f the underlying generative model.

4.2 Discriminative Reranking for Generative Word Alignment Models

The idea behind applying discriminative training to getigeamodels is to enable us to use a discrimina-
tive criterion to access knowledge which can not be dira@ntigrated into the generative model (because
of the need to reengineer the generative story).

Discriminative reranking of the output of a generative madses a representation of the guesses of
the generative model. If this representation explicitiymerates the best N complete hypotheses, it is
called an N best list. The hypotheses are ranked by theitgitities. Discriminatively reranking an N
best list allows the use of additional knowledge which wdwgddifficult to incorporate directly into the
generative model to produce a new ranking (i.e. differeabgbility scores for the hypotheses in the N
best list). If additional knowledge sources are effectivadmbined with the knowledge sources in the
original generative model, this ranking will be better tHanat least as good as) the ranking output by
the original model.
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1 g(xilei) source word type

2 w_1(i — ps|class (e;)) choosing a head word

3 t1(fjle:) head word translation

4 s(viles, vs) 1; is number of words in target cept

5 so(vo| >, i) number of unaligned target words

6 to(f5) identity of unaligned target words

7 t=1(fjle:,class,(7i1)) non-head word translation

8 di(Aj|class(e,), class (f;)) | movement for target head words

9 d2(Aj|class (f5)) movement for left-most target non-head word

10 d>2(Aj|class(f;)) movement for subsequent target non-head words
11-20 (same features, target to source direction)

Table 4.1: Sub-models derived from LEAF

We present a new discriminative reranking method which weagply to an N best list generated
using LEAF. After presenting relevant previous work on disinative reranking, we will generalize this
to a new semi-supervised training approach.

4.2.1 Reinterpreting LEAF as a Log-Linear Model

In this section we will reinterpret LEAF as a log-linear mbdghis form of model will allow us to use
the distributions which make up LEAF in a discriminativelgined model, as we will explain in the next
two sections.

We use the term “sub-model” to refer to the components of calets. This emphasizes that most
of these “sub-models” are in fact models which are estimited data. These “sub-models” often have
parameters and rely on what we normally think of as “featui@sheir parameterization. However, not
all of our sub-models will have parameters (for instancecoudld imagine defining a sub-model which
is simply the percentage of the French words which are unedly A sub-model is simply a function
applied to an alignment which outputs a real number (we hbatthe reader who prefers to call this a
“feature function” or “feature” will simply mentally tratete “sub-model” to their preferred term). An
effective sub-model can be used to tell us whether to praferhypothesized alignment over another.
If we view the numbers output by a sub-model as negative logatilities, then a high number (cost)
assigns the alignment a low probability, while a low numtzgigns the alignment a high probability.

In this section we reinterpret the probability distributsoof LEAF listed in Table 4.1 as sub-models
of a log-linear model and estimate the weights associatddegich sub-model. The model formulation
is given in Equation 4.1. We reinterpret the new generatigdehas having ten sub-models in the source
to target direction, and ten sub-models in the target tocsodirection, for a total of twenty sub-models,
which are listed in Table 4.1. Each sub-modehas an associated weighy,. Our approach can also
be applied to additional sub-models which are not part ofottiginal generative model, which will be
discussed in Section 4.8.1.

exp(3; Aihi(f,a,e))
_ i 4.1
pk(a7f|€) Zf/’a/ exp(zi )\ihi(flya/7e)) ( )
Given a vector of weights, the alignment search problem, i.e. the search to returpebialignment
a of e and f according to the model, is in Equation 4.2.

a = argmax py(a|f, e) = argmax py(a, fle) = argmax emp(z Aihi(f,a,e)) (4.2)

3
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4.2.2 Discriminative Training Algorithm

Given a hypothesized alignmemta gold standard alignmept and the English and French sentences,
we can calculate an error functiofi{a, g, ¢, f). We would like to minimize the error function by finding
the best\ settings. This is a supervised learning problem, the disoative training problem, listed in
Equation 4.3.

argmin E(a, g, e, f) wherea is as defined in Equation 4.2 (4.3)
A

Because this is a structured learning problem over the emasrepace ok vectors, exact inference is
intractable. We will instead develop an iterative processblving Equation 4.3. We will learn optimal
weights over a (growing) set of hypotheses for a small nurobearallel sentences for which we have
gold standard alignments. We use F-measurgy) as our error function, comparing hypothesized word
alignments for the discriminative training set (often rede to as the “development” or “dev” set) with
the gold standard.

The discriminative reranking algorithm is initialized Withe parameters of the sub-modgélsvhich
are the final distributions estimated during unsupervisathing of the generative model), an initial
choice of the\ vector, gold standard word alignments (labels) for theradignt discriminative training
set, the constant N specifying the size of the N best, liahd an empty master set of hypothesized
alignments. The algorithm consists of repeatedly runnitgpp which consists of three main steps:

LOOP:

1. Produce an N best list usingby solving Equation 4.2). If all of the hypotheses in the Ntbiss
are already in the master set of hypotheses, the algoritntdraverged, so terminate the loop.
Otherwise add new hypotheses to the master set of hypotheses

2. Inthis step, we choose the bastector to minimize error from a set of candidates. The caatesl
are our currenf vector, any\ vectors which were chosen previously in Steps 2 and 3, and 999
randomly generated vectors. Given these candidlagctors we apply each of them to the master
set of hypotheses in order to determine the top ranked aégtuw’, and and then evaluate the error
function E(a’, g, ¢, f). We set) to the X vector which resulted in the alignments with the lowest
error (i.e. the highest F-meas(g score since we use— F-measurgy) as our error criterion),
so we have solved Equation 4.3.

3. Run a “city block” error minimization step which resultsa new vector\. This minimization
also involves solving Equation 4.3, but is more complex thiarply evaluating the error of several
A candidates. The implementation of “city block” minimizatifor our problem is discussed in
detail below.

Step 3 of the algorithm tries to find the bessetting over the set of hypotheses for the sentences
in the discriminative training set using numerical optiation. This is an M-dimensional optimization
problem (where M is the number of sub-models). Minimizingoeffor all of the weights at once is
not computationally feasible. We initially applied PovieIMethod (Press et al., 2002), using Brent’s
Method (Press et al., 2002) for line minimization, but fouht to be ineffective. This is might be
because the assumption that the error surface is quadrasivi@lated and the line minimization was
then quickly trapped in local error minima which were muchrsesthan the global error minima.

1N = 128 for our experiments
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Och (2003) has described an efficient exact one-dimenséra minimization technique for a sim-
ilar search problem, which we will adapt to our problem. Tihilves calculating a piecewise constant
function. This function, which is calculated for a fixed suiedelm, is a function of one variable. The
function directly evaluates the error of the hypothesestviiould be picked by equation 4.2 if we hold
all weights constant, except for the weight,{ for somem) under consideration, which is setito The
formula for such a function for sub-moded, which we callf,,,(z) is given in Equation 4.4.

fm(z) = E(argmax exp(z * hy,(f, a,e) + Z Aihi(f,a.e)),g,¢e, f) (4.4)
e i#Em

We implement “city block” minimization by first calculatinthe M functions. Once we have calcu-
lated an explicit representation of each of the functignswe can quickly find the error minima (the
value resulting in lowest error) for eagh,. We then choose the sub-modeland the valuer resulting
in the lowest error minima and s&t, = x. We iterate this process until no further reduction in ecam
be found.

We can in fact generalize Equation 4.4 to calculate a funckiw any line in the M-dimensional
space (not just the M unit vectors). It would seem obviouswheashould use exact line minimizations in
place of Brent’'s method and apply Powell's method. Howes@unter-intuitively, we have found that in
practice Powell's method is quickly trapped in local erronima even with the exact line minimizations.
We have instead found it more effective to perform “city i{bminimization over just the M unit vectors.

In automatic word alignment problems using a large numbeubfmodels, the outcome of Step 3
is sensitive to the starting point. If we consider just st2jasd 3, then we can define a search error as a
failure to find the besk value for minimizing the error of the hypothesis chosen ftbmcurrent master
set of hypotheses using Equation 4.2. Performing step Zhwkdts both the vectors which were found
useful previously and a large number of rand@mectors, and then using the best result as the starting
point of the “city block” minimization in step 3 seems to redusearch errors to an acceptable level, but
we believe that in future work we will be able to improve orsthi

4.3 Previous Work in Discriminative Training

Discriminative reranking has been used successfully inynagas of NLP. A good example area is
syntactic parsing. For parsing, discriminative rerankives introduced by (Collins, 2000). He starts
with an underlying generative model which models the joeneration of a sentence and its parse-tree.
Given a new sentence to parse, he first selects the best Ntpagseaccording to his generative model.
Then he scores new features, which could not be easily etgjinto a new generative story because
their roles in generation would overlap, and learns disicréttively how to rerank the parses in his N best
list. He uses a greedy feature selection technique to deterwhich features are important. Recently
a very large number of different approaches to discrimimieaeranking have been applied to syntactic
parsing, and there have also been a large number of moreajjeseriminative training algorithms
used. One discriminative training algorithm of particulaterest to us is training using the averaged
perceptron (Collins, 2002), which was refined and appliegdaod alignment by Moore (2005); this will
be discussed in Section 4.4.3.

Discriminative reranking has also been applied to machimestation. Och et al. (2003) and Och
etal. (2004) used a large number of feature functions andiiceéminative training technique defined by
Och (2003) to rerank N best lists of hypothesized Englishdli@tions for Chinese sentences to improve
the quality of translations. Shen and Joshi (2005) evatuataximum margin approaches for the same
task.
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Other approaches to discriminative training based on aenlyidg generative model have been ap-
plied in NLP. We present work in the area of machine trarstatas it is relevant to the discriminative
training approach we will take. Och and Ney (2002) introdliadog-linear model for translation com-
posed of a collection of sub-models which are estimatedguginious techniques. These included sev-
eral sub-models estimated by taking the relative frequeficpnsecutive word phrases extracted from
the one-best output of symmetrized Model 4 alignments asaliatluded sub-models which backed off
estimation of phrase-to-phrase translation probakslitiea word-level translation lexicon. Both the max-
imum mutual information (MMI) and the minimum classificatierror (MCE) criteria were tried. Och
(2003) introduced direct error minimization for statisficnachine translation using the same log-linear
model, and showed that discriminative training to the firafgrmance criterion, BLEU, is superior to
training using MMI or MCE. Other optimization technique® grossible with log-linear models. For
instance Zens and Ney (2004) used the downhill simplex naetivérain weights for both phrase-based
and alignment-template-based translation, and CettadoFaderico (2004) used the downhill simplex
method to train weights for a log-linear model involving &nterpretation of the Model 4 sub-models
for translation.

The approaches to discriminative reranking and discritiiearaining for Machine Translation
which we have discussed use a log-linear model to integtdtar®dels of widely varying granularity.
The log-linear model is trained either to a criterion whiclhximizes entropy, or to directly maximize
the final performance criterion. Och (2003) showed thatakted performs well in practice. When train-
ing to the final performance criterion is chosen, two appneado discriminative training are generally
used. The simpler approach is to generate candidate vemftoveights and evaluate the results; the
down simplex optimization method (Press et al., 2002) isroomly applied here. We apply this type
of approach in step 2 of our discriminative algorithm in aeregimpler fashion, by simply generating
random vectors and evaluating them. The other approachdunted for translation by Och (2003), is to
optimize over N best lists using exact line minimizationkisIputs the performance criterion inside the
optimization. We use exact line minimizations in the “citypdk” minimization which is performed in
step 3 of our algorithm.

4.4 Previous Work in Discriminative Modeling for Word Alignment

Previous work on discriminative modeling for word-alignmiffers most strongly from the log-linear
approach in that it generally views word-alignment as a suiped task. However, all of the state of the
art approaches depend on using features from an unsupkggserative model in order to obtain their
best results because of the small amount of gold standard alignments available (Liu et al., 2005;
Ittycheriah & Roukos, 2005; Taskar et al., 2005; Ayan & D@B06b; Lacoste-Julien et al., 2006; Fraser
& Marcu, 2006; Blunsom & Cohn, 2006; Moore et al., 2006).

We are most interested in discriminative models which atlmswise of many-to-many non-contiguous
alignment structure. We are less interested in discrinvi@amodels using 1-to-N structure, as the use of
1-to-N requires a heuristic step following the discrimimatraining to obtain the M-to-N discontiguous
alignments actually used to build SMT systems. The use dif auteuristic step means that alignment
quality can not be directly optimized. We will show in Sectid.8 that optimizing F-measuke) for
1-to-N and M-to-1 alignment models separately (and thenbioimg their predictions using a sym-
metrization heuristic such as “Union”) is inferior to ditcoptimizing F-measurgy) for our M-to-N
alignment model.

We are not aware of previous work on discriminative modelb ai“phrase-based” contiguous M-
to-N structure, and given the recent success of hierarcBigH models (which support gaps in the
translation rules) we doubt this is would have strong penforce for most data sets. However, it would
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be simple to implement this to test this assumption. As weudised in Section 3.2.3, phrase-based
structure can be modeled as a special case of LEAF (howevierjmportant to remember that the
conditioning of the generation decisions would be on thedhgards rather than on the full phrase).
EMD could then be applied without modification to a log-lin@aodel using the sub-models derived
from this special LEAF model.

4.4.1 Discriminative Models of 1-to-1 Structure

After Brown et al. (1993), much of the initial work on gendévatmodeling was done using 1-to-1
structure. This structure is not a good choice for maxinggZBMT performance, but is an interesting
starting point for researchers who then go on to work on mdgaly structured output spaces. In
particular, search limited to a 1-to-1 alignment strucfar&irly simple even for models which use very
complex features.

Taskar et al. (2005) took a similar approach to the models elamed (2000) and Cherry and Lin
(2003), but in a discriminative context, casting the wordrahent problem as a maximum weighted
bipartite matching problem, which is estimated within taege margin framework using a quadratic
program. They use such features as DICE score, orthographitarity and proximity of (absolute)
positions.

Liu et al. (2005) built a log-linear model using the IBM Modehlignment score in both directions
and discriminatively reranked it. Additional sub-modelsrera POS-based lexicon model, and a dictio-
nary based lexicon model. They showed small improvemertialenced F-measure with Sure/Possible
over symmetrized Model 4, but did not show what the effectndranslation quality. Their discrimi-
native reranking approach is similar to ours, but with intaot differences. They did not decompose
the underlying generative model, which is IBM Model 3. Irstethey used two features based on the
score of the full model. These features model 1-to-many aslyrto-1 alignments respectively, so they
can not directly model many-to-many alignments. One ofdte® feature functions must have a value
of zero unless the hypothesized alignment is a 1-to-1 al@mmThe other main difference is that they
trained to the Maximum Entropy criterion rather than maximy the final performance criterion, though
they indicate interest in doing this and they use heurigtidsy to pick local maxima of the Maximum
Entropy training which are better according to the final perfance criterion.

4.4.2 Discriminative Models of 1-to-N Discontinuous Struaire

The 1-to-N structure, used initially in the generative mediefined by Brown et al. (1993), has a long
and distinguished history. Discriminative approachescWwhadopt the 1-to-N structure are a logical
extension of this.

Berger et al. (1996) defined a word level lexicon model whisbdivarying amounts of context up to
3 words in each direction from the word being translated,disdussed how to train this representation.
Garda-Varea et al. (2002) implemented this in an alignment pgek This work defined the lexicon
using both word contexts and word class contexts. The sysgsbuilt by first completely training the
IBM models to obtain both the 1-to-N Viterbi alignments iniagde direction and the sub-models repre-
senting fertility and distortion. The weights of the feasifor the special lexicon were trained using the
Viterbi alignments as training data and the maximum entajgrion. The fertility and distortion mod-
els were then retrained, holding the special lexicon mogetifi Finally the presumed Viterbi alignment
was calculated, and this was returned as the final discriiméia reranked result. This work resulted in
small gains in balanced F-measure over Model 4 and has notdh@svn to improve translation quality.

Kumar and Byrne (2002) presented a framework for searchimginimize the Bayes Risk, applied
to word alignment. The work presented used IBM Model 3 witheteordering model (i.e., translation
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and fertility were modeled as in Model 3, but distortion wasd®led as a uniform distribution). The
insights in this work could be applied in our framework in flaéure, once we have a better posterior
distribution over word alignments.

Ittycheriah and Roukos (2005) presented a 1-to-N discatiia model trained using the Maximum
Entropy criterion specifically for the task of Arabic/Ergfliword alignment. They showed balanced
F-Measure results which were competitive with 1-to-N GlZA-and are one of the few works which
also compared the resulting MT performance, where they heaghsistent gains over 1-to-N GIZA++
(unfortunately there was no comparison with heuristicalynmetrized GIZA++, which would have
been a stronger baseline). They invested significant effetb-model engineering (producing both sub-
models specific to Arabic/English alignment and sub-moudieh would be useful for other language
pairs), while we use sub-models which are derived from LEA& a few heuristic features. In contrast
to their work, all of the sub-models we have presented amgulage independent.

Blunsom and Cohn (2006) created a Conditional Random H&RFH) model for the 1-to-N align-
ment task, and trained it to minimize AER. The model struetuas similar to the HMM model in that
there was a first-order Markov assumption, but because tleeg using a CRF they were able to inte-
grate overlapping features (lexica based on string siityilavords and POS tags were all scored for the
same link), which would have been difficult to integrate iatgenerative story.

Previous to our work with LEAF, we used 1-to-N structure witthe work we did on training a
log-linear model using a mix of features derived from IBM Mbd and heuristics (Fraser & Marcu,
2006). In this work we optimized the F-Meas(#¢ of models in both directions independently, but
at each iteration of training we estimated additional wiengel lexicons by heuristically symmetrizing
the Viterbi alignments taken from both training directiorihis is similar to the symmetrized lexicon
training of Zens et al. (2004). We will compare the currenprapch using sub-models derived from
LEAF with our previous approach using sub-models derivethfModel 4 in the experiments in Section
4.8.

4.4.3 Discriminative Models of 1-to-N and M-to-1 Discontinuais Structure

Lacoste-Julien et al. (2006) created a discriminative rhoedricted to 1-to-1, 1-to-2 and 2-to-1 align-
ments. This work extends the framework of Taskar et al. (2008he “quadratic” case, where there are
features on pairs of edges rather than individual edgesyig them to robustly model 1-to-2 and 2-to-1
alignments. Parameter estimation can be solved exactlyjaadratic assignment problem, but can also
be relaxed to be solvable as a quadratic program. Predistisnlved as an integer linear program, but
can this also be relaxed. The (relative) tractability ofrskdn this framework is attractive, but this is at
the cost of the unreasonable 1-to-2 and 2-to-1 assumptimh&eaker features than the features derived
from LEAF. This work valued tractability over the richnesistioe features, which is at odds with our
approach. The approach also requires the use of Hammingsa$e training criterion. Hamming loss
has been shown to be effective in reducing AER, but no worlbkas done to show that it is effective for
optimizing a metric which correlates well with machine skation performance. The best results were
obtained using features based on intersected Model 4 anchefnim HMMs trained to agree (Liang
et al., 2006). The generated alignments were not evaluatedtatistical machine translation system.
Moore et al. (2006) introduced a sequence of two discrimiaahodels called Stage 1 and Stage 2.
The final alignments generated are 1-to-1, 1-to-2, 1-to4®-2 or 3-to-1 alignments. Unlike the work
of Lacoste-Julien et al. (2006), there is nothing in the feamrk which inherently restricts the N and M
variables in the 1-to-N and M-to-1 alignments modeled, ascagsume that the choice of 3 for both of
these variables was a good choice to minimize AER for thedfnglish alignment task considered.
The Stage 1 model is estimated from the unannotated fullibgidata and the annotated discriminative
training set. The Stage 2 model is estimated using the predécof Stage 1. The features used in
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Stage 1 include alignment geometry, exact string match¢défeatures (for words occurring two or
more times in the small discriminative training set), andrking induced from the log likelihood ratio
calculated over cooccurences of words occurring in parsdietences in the full training data. The stage
2 model uses statistics taken from the stage 1 model’s gigaicon the full training set, in particular
an empirically estimated feature which models the proligiwf a single source word being aligned to
a bag of up to 3 target words (or vice versa) and an empiriegtimated jump distance feature. The
model is trained using the averaged perceptron which regjaiheuristic search to find the most probable
alignment just as ours does, but a beam decoder is used tlaéimea hillclimbing search. The averaged
perceptron training was compared with using a support vyentchine formulation which is designed
for structured prediction, and the two approaches had airpérformance. The conclusion of this work,
that the richness of the features is more important than ig@ichinative training technique, matches
our intuition. Similarly to the work of Lacoste-Julien et 42006) the best results were obtained using
intersected Model 4 and HMMs trained to agree, and MT perémoee was not evaluated. We view both
of these works as providing an interesting study of feafuseme of which we intend to try adding to
our model in future work.

4.4.4 Discriminative Models of M-to-N Discontinuous Structuie

Ayan et al. (2005) used transformation based learning t@mdpghe 1-to-1 and 1-to-N discontinu-
ous alignments generated from generative statisticatalent models to general M-to-N discontiguous
alignments. They used a small gold word alignment set tolefiective transformations (additions or
deletions to the alignment) which used context modeledgudivsed-class words, POS tags, and depen-
dency trees. This work integrates interesting featureshvhie will consider using in the future in our
semi-supervised approach.

Ayan and Dorr (2006b) used a Maximum Entropy classifier to lioen the predictions of several
alignment systems. Based on features over the input alighse¢ geometry and POS tags, they learned
to classify whether a particular link that is predicted bylestst one of the input alignments should
be included in the final alignment. These decisions were madeach link independently as they are
conditioned only on the input and not the output. The expenits performed included combining Model
4 and the HMM extensions of Lopez and Resnik (2005). They sdasignificant improvements in MT
quality over heuristic symmetrization for small data s€sr approach, in contrast, involves a powerful
model where alignment links are not considered indepehgdnit maximizing this model requires a
search over possible alignment bigraphs of the whole seetéWe could add the predictions of other
models into our model in a similar fashion to their work. Wevdain fact tried combining information
in a similar fashion using alignments generated from the HMrbi alignments (which are also what
we bootstrap from) in conjunction with using three heucisiimmetrization metrics and found this to be
ineffective when using sub-models derived from LEAF (althb we note that these same sub-models
were effective in our previous 1-to-N log-linear model ($&a& Marcu, 2006)).

4.5 Semi-Supervised Learning

During our discussion of semi-supervised training, we daalistinction between discriminative training

and semi-supervised training, as applied to generativeeiaoth discriminative training we rerank the

predictions of a generative model to obtain predictionsighér quality. There is no mechanism so that
the discriminative criterion can affect the estimates eftinderlying generative model. Discriminative
training (when applied to an underlying generative modal) be viewed as a weak form of semi-

supervised learning which is missing this important feethaop.
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Most approaches to semi-supervised learning require lieatabeled data be sufficient to make a
good initial estimate which is then refined using unlabelathdSeeger, 2000). In fact, the problem of
semi-supervised learning is often defined as “using unémbedta to help supervised learning” (Seeger,
2000). Most work on semi-supervised learning uses undegylgenerative models which have distribu-
tions with a relatively small number of parameters. An alithodel is estimated in a supervised fashion
using the labeled data, and this supervised model is usettiithdabels (or a probability distribution
over labels) to the unlabeled data, then a new superviseélnwestimated, and this is iterated.

For instance, both Nigam et al. (2000) and Miller and Browyn{B003) train an initial supervised
classifier and then use EM to improve the initial estimate adterior class membership probabilities.
In cases where there are only a small number of labels alaitelh a very large number of parameters
must be estimated, such as when the number of parameteeagesr as training data increases, this
is not practical. If this technique is applied in these cagtesill lead to the so-called “overconfident
pseudo-labeling problem” (Seeger, 2000), where the Iralzels of very poor quality assigned to the
unlabeled data will at the best have no effect, and at thetwlorainate the initial model estimated in the
M-step causing convergence to a local minima of very poolityu@ith respect to the final performance
criterion).

We present the following alternative, which alternativeljnimizes error and maximizes likelihood.
Our new approach applies in cases where the amount of ladatads not sufficient to do supervised
estimation of an initial model of reasonable quality, butlese large amounts of unlabeled data and a
generative model which can be trained in an unsupervisdubiasWe call our training approach “Min-
imum Error / Maximum Likelihood Training”, and we introdutiee “EMD” semi-supervised training
algorithm to perform the training.

4.6 Minimum Error / Maximum Likelihood Training

We extend approximate EM training to perform a new type ahing which we call Minimum Error /
Maximum Likelihood Training. The intuition behind this ajgach to semi-supervised training is that
we wish to obtain the advantages of both discriminativeningj (error minimization) and approximate
EM (which allows us to estimate a large numbers of parameféstively even though we have too few
gold standard word alignments to do this in a superviseddashWe introduce the EMD algorithm,
in which discriminative training is used to control the admitions of sub-models (thereby minimizing
error), and a procedure similar to one iteration of appret@EM is used to estimate the large number
of sub-model parameters, by using steps which increadéliel.

Intuitively, in approximate EM training for word alignme(Brown et al., 1993), the E-step corre-
sponds to calculating the probability of all alignmentsading to the current model estimate, while
the M-step is the creation of a new model estimate given tbbatility distribution over alignments
calculated in the E-step.

In the E-step ideally all possible alignments should be esrated and labeled with(ale, f), but this
is intractable. For the M-step, we would like to count ovépaksible alignments for each sentence pair,
weighted by their probability according to the model estiedaat the previous step. Because this is not
tractable, we make the assumption that the single assuntedbMalignment can be used to update our
estimate in the M-step. This approximation is called Vitéraining. Neal and Hinton (1998) analyze
approximate EM training and motivate this type of variant.

The basic intuition behind our approach to semi-supervisathing is that we wish to obtain the
advantages of both discriminative training and approxént&tl. We use discriminative training to con-
trol the contributions of sub-models, which vary in gramiijafrom large numbers of parameters to a
single parameter (this can be a single parameter in thenatigenerative model, which we are training

56



discriminatively here). We use a sub-procedure very smhilapproximate EM to train the often very
large numbers of parameters of the sub-models themselves.

Here is an initial brief outline of the approach. We first detime a decomposition of the generative
model into sub-models. We then add additional sub-modeishwhliere not in the generative model.

A single iteration of EMD training consists of a step whickembles the E-step in EM, followed by
a step which resembles the M-step in EM, followed by a “dieanative step”, which we call the D-step.
In the step which resembles the E-step, we use the welgatsl the estimates of all sub-models (both
the sub-models in the generative model and those sub-matiéh are not in the generative model) to
predict alignments for the entire training set. In the stéyictv resembles the M-step, we reestimate the
sub-models dependent on the hypothesized alignments éon@e, the sub-models which are distri-
butions from the generative model). The D-step estimatesvikight vector\ which minimizes error.
It does this by repeatedly reranking the output of the gdiveranodel for a small set of sentences for
which we have labels. This completes one iteration of trgjni

We start the EMD algorithm by estimating the sub-modelsrndkam the generative model by boot-
strapping as in the unsupervised case. We then carry outitéal D-step. After this “iteration 0",
complete iterations of EMD training are performed, staytivith iteration 1.

4.6.1 EMD Algorithm

A sketch of the EMD algorithm applied to our extended modedrissented in Figure 4.1. Parameters
have a superscriptrepresenting their value at iteration The parameters of the iteration dependent
sub-modeln at timet ared! , while the parameters of the sub-modehich is iteration independent
is denoted’,,,. We initialize the algorithm with the gold standard wordjalnents (labels) of the word
alignment discriminative training set, an initial N, the starting alignments (the final HMM Viterbi
alignment), and the parameters of the heuristic sub-maudeiish are iteration independertt’). In line

2, we make iteration O estimates of the sub-models whosengtess are estimated from the current
Viterbi alignment (these are sub-models M@, and include the sub-models based on distributions used
in LEAF). In line 3, we run discriminative training using tladgorithm from Section 4.2.2. In line 4,
we measure the error of the resultixgrector. In the main loop in line 7 we align the full trainingt se
(similar to the E-step of EM), and in line 8 we estimate theaite®n-dependent sub-models (similar to
the M-step of EM). Then we perform discriminative rerankindine 9 and check for convergence in
lines 10 and 11 (convergence has been reached if error wakeomased from the previous iteration).
The output of the algorithm is hypothesized alignments eféhtire training corpus (calculated in line
7).

In the general word alignment problem, the entire searchespan not be enumerated, which is the
reason we have to do multiple iterations of the loop of thestiim” subroutine (which was presented in
Section 4.2.2). For each iteratiorof the the “Discrim” subroutine, we find a new vectbmhich then
causes us to enumerate a different portion of the searcle §p&tep 1 of the “Discrim” subroutine. We
could run this process until we no longer search a differentign of the search space (i.e., we find no
new N best list entries), at which point we would assume we ltanverged. In practice we stop when
the error does not decrease. Note that if EMD is used for ardifit problem where the entire search
space can be explicitly enumerated, the code inside thedbibye “Discrim” algorithm would only need
to be executed once per outer loop iteration

When re-estimating the generative model we use the hypatttkibels for the discriminative train-
ing set, rather than the gold standard labels. Otherwise ewddroverfit the labels on the discriminative
set and so we would be unable to continue using predictiodstermine good weights.

Itis important to emphasize that we are not presenting jdgaiminative reranking step but instead
a fully integrated approach, taking advantage of the faat the power of each sub-model changes
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1: Algorithm EMD(labels, X', N, starting align-
mentsf’)

2: bootstra@?, for m = 1to M’

3: X0 = Discrim@°, ¢', X, labels, N)

4: €9 = Error(\%)

5:t=1

6: loop

7:  align full training set using?~!, =1 and¢’

8: estimaté!, form = 1to M’

9: At =Discrim@?, ¢’, X* 1, labels, N)

10: ¢! =Error(\Y)

11:  if e >=¢!"1then

12: terminate loop

13:  endif

14: t=t+1

15: end loop

16: return hypothesized alignments of full training
set

Figure 4.1: Sketch of the EMD algorithm

over the training process (i.e., from iteration to iterataf training). It is the ability to determine how
discriminative each sub-model is at each iteration of saupiervised training and the ability to directly
train a few sub-model parameters directly at each iteratfosemi-supervised training which gives us
performance superior to discriminative reranking (whéese two things can only be done once, after
the estimation of the generative model).

4.7 Previous Work on Semi-Supervised Learning

Previous approaches for using EM for combining labeled artaheled data have often been applied to
unstructured classification. An initial classifier is leaginfrom labeled data, and then this classifier is
used to label unlabeled data with posterior class memigesbbabilities. EM is then used to improve
the initial estimate of posterior class membership prdies. For labeled data, the probability of the
correct class is maximized, and this improves estimatetastanembership for the unlabeled data. For
unlabeled data the maximum a posteriori (MAP) solution lscted.

There is a large body of work on semi-supervised learning pérameterized distributions that are
described by a small number of parameters; we present a fempgs. Miller and Uyar (1997) used
unlabeled data and EM to augment a mixture of experts. Maltel Browning (2003) used an extension
of the EM algorithm for a task modeled as a mixture of Gaussiarheir algorithm is similar to the
algorithm we propose in that they extended the EM algoritlyninborporating an additional separate
optimization for training a small number of parameters, thely trained these parameters to maximize
complete data log likelihood rather than the final perforogacriterion.

There has also been some work on semi-supervised learniag a&vimuch larger number of param-
eters must be estimated. Nigam et al. (2000) addressed aléssification task where each class is
modeled as multiple mixtures over the entire vocabulareyTéstimated a Naive Bayes classifier over
the labeled data and used it to provide initial MAP estimédesnlabeled documents. They then ran EM
as described above. They introduced a single mixing pagrt@attempt to control problems with the
estimates from the unlabeled data washing out the estirfrataghe labeled data. Their approach would
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Figure 4.2: Two alignments with the same translationalespondence

not work if applied to our scenario as the number of labeledles is small, so the initial labellings of
the unlabeled data would be very poor, causing the “overdentipseudo-labeling problem” we already
mentioned in Section 4.5.

Callison-Burch et al. (2004) performed a preliminary stadythe issue of semi-supervised train-
ing for word alignment. They addressed their lack of maryuafinotated data by using automatically
annotated data as a replacement for human annotated dal@oairdy at the effect of semi-supervised
learning on both AER and BLEU, following the work of Nigam ét 42000). However, their simu-
lated supervised data was annotated using GIZA++, whiclyeahave already shown, can be further
improved substantially, so we do not believe that they seded in realistically simulating having large
amounts of manually annotated data. However, their exgagrisnon combining higher and low quality
automatically generated alignments did result in an ingartinding. They showed that it is important
to ensure that the larger amount of low quality annotationsat “wash out” the parameters estimated
from the higher quality annotations, which is an insight witt use in the experimental section.

Two approaches that are more similar in spirit to our worlolmg the use of labels in reinforce-
ment learning and the use of labels in clustering. lvanoJ.ef2001) used discriminative training in
a reinforcement learning context in a similar way to our adddf a discriminative training step to an
unsupervised context. A large body of work uses semi-sugexiearning for clustering by imposing
constraints on the clusters. Basu et al. (2004) is a good gheamwhere the system was supplied with
lists of pairs of instances labeled as belonging to the sandéferent clusters. Our work can be moti-
vated in a similar fashion to theirs, but the details areegditferent. We are solving a difficult structured
prediction problem which involves a search over bigrapheéxh parallel sentence pair.

4.8 Experiments

We perform experiments on the two large alignments tasks f@hapter 3, for Arabic/English and
French/English data sets. Statistics for these sets avenshodrable 3.3 on page 35. All of the data used
is available from the Linguistic Data Consortium excepttf@ French/English gold standard alignments
which are available from the authors.

We showed that F-Measure is effective in predicting BLEU ima@ter 2. Therefore, we ude—
F-Measuréx) as our error criterion in discriminative training. We edistied that it is important to tune
« (the trade-off between Precision and Recall) to maximizéop@ance.

We remind the reader of the problem we discovered in Chapterhich is that two alignments
which have the same translational correspondence can ifearedt F-Measures. An example is shown
in Figure 4.2. To overcome this problem we fully interlinkéiak transitive closure of the undirected
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1 | g(x:|e:) source word type 9 d2(Aj|class(f;)) movement for left-most
target non-head word
2 | w_1(z — ps|class(e;)) choosing a head worg| 10 ds2(Ajlclass(f;)) movement for subser
quent target non-head words
3 | t1(f;le:) head word translation 11 t(fjle:) translation without dependency on
word-type
4 | s(viles,vs) s is number of words in targel| 12 t(f;les) translation table from final HMM it-
cept eration
5 | so(tbo| >, i) number of unaligned target 13 s(vi|y:) target cept size without dependency
words on source head word
6 | to(f;) identity of unaligned target words 14 s(vile;) target cept size without dependency
on-y;
7 | t>1(fjles,class.(7:1)) non-head word transy 15 target spurious word penalty
lation
8 | di(Ajlclass(e,),class(f;)) movement for|| 16-30 | (same features, other direction)
target head words

Table 4.2: Sub-models used together with the EMD algorithm

bigraph formed by each alignment hypothesized by our basaliignment systeris This operation
maps the alignment shown to the left in Figure 4.2 to the alignt shown to the right. Recall that this
operation does not change the collection of phrases or eutescted from a hypothesized alignment.

The best settings af werea = 0.1 for the Arabic/English task and = 0.4 for the French/English
task, , see Chapter 2 for details of the process used to clivese constants.

4.8.1 Evaluating EMD+LEAF

We present an experiment which evaluates the efficacy of KB Eaining algorithm when applied to
a log-linear model. We decompose LEAF, presented in Se@&i2nin both translation directions to
provide the initial feature functions for the log-linear ded, features 1 to 10 and 16 to 25 in Table 4.2.

To provide additional robustness, we use back-offs for thadslation decisions (features 11 and
26), the HMM translation tables (features 12 and 27) and 4odiskfor the target cept size distributions
(features 13, 14, 28 and 29 in Table 4.2). We also use heagrisfhich directly control the number of
unaligned words we generate (features 15 and 30 in Tablewli®yh allows us to control the trade-off
between Precision and Recall which is required to optimmeparticulara used with F-Measu(er).

We perform one main comparison, which is of semi-supervigetiems. This is also what we will
use to produce alignments for evaluating SMT performance.cé¥npare semi-supervised LEAF with
our previous state of the art semi-supervised system (F&ab&arcu, 2006) which also uses the EMD
algorithm but separately optimizes 1-to-N and M-to-1 tfatign performance using sub-models derived
from Model 4 and a larger number of heuristic models than aeslwith LEAF. We perform translation
experiments on the alignments generated using semi-sgpdrvaining to verify that the improvements
in F-Measure result in increases in BLEU. Note that the tgaifor the first E-Step of the French/English
experiments are presented in Appendix C.1. The curreniptimzed) LEAF search implementation is
slow, speeding up search is discussed in the same appendix.

2All of the gold standard alignments were fully interlinkesidistributed. We did not modify the gold
standard alignments.
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FRENCHENGLISH ARABIC/ENGLISH
SYSTEM F(e=04) | BLEU | F(a=0.1) | BLEU
GIZA++ 73.5 30.63 75.8 51.55
FRASER ANDMARCU (2006) 74.1 31.40 79.1 52.89
LEAF UNSUPERVISED 74.5 72.3
LEAF SEMI-SUPERVISED 76.3 31.86 84.5 54.34

Table 4.3: Experimental Results

In order to have the results in a single table, we also comjparensupervised LEAF system with
GIZA++ Model 4. This gives an idea as to the performance ofuhgupervised model, and is a repeat
of the results from Section 3.5. The reader is referred tfeereirther explanation.

To build all alignment systems, we start with 5 iterationsMiddel 1 followed by 4 iterations of
HMM (Mogel et al., 1996), as implemented in GIZA++ (Och & N&@03), and use the final iteration of
HMM to perform the bootstrap. To generate the final outpufbnon-LEAF systems, we take the best
performing of the “Union”, “Refined” and “Intersection” symetrization heuristics (Och & Ney, 2003)
to combine the 1-to-N and M-to-1 directions resulting in &®4N non-consecutive alignment. Because
these systems do not output fully linked alignments, weyflifik the resulting alignments. Once again,
the reader should recall that this does not change the satesf or phrases that can be extracted using
an alignment.

Results for the experiments on the French/English datarsetteown in Table 4.3. We ran GIZA++
for four iterations of Model 4 and used the “Refined” heucigtine 1). We ran the baseline semi-
supervised system for two iterations (line 2), and in caitreith Fraser and Marcu (2006) we found
that the best symmetrization heuristic for this system w&sidn”, which is most likely due to our use
of fully linked alignments. We observe that LEAF unsupeedgline 3) is competitive with GIZA++
(line 1), and is in fact competitive with the baseline senmppervised result (line 2). We ran the LEAF
semi-supervised system for two iterations (line 4). The keslt is the LEAF semi-supervised system,
with a gain of 1.8 F-Measure over the LEAF unsupervised systad a gain of 2.8 F-Measure over
GIZA++.

For French/English translation we use a state of the artsghipased MT system similar to those of
Och and Ney (2004) and Koehn et al. (2003). The translatisind&ta is described in Table 3.5.1. We
use two trigram language models, one built using the Engi@tion of the training data and the other
built using additional English news data. The BLEU scorg@ere=d are calculated using lowercased and
tokenized data. For semi-supervised LEAF the gain of 0.46Blover the semi-supervised baseline
is not statistically significant (a gain of 0.78 BLEU would bequired), but LEAF semi-supervised
compared with GIZA++ is significant, with a gain of 1.23 BLEWe note that a gain of 1.23 BLEU
shows a large gain in translation quality over that obtaimgdg GIZA++ because for the French/English
task BLEU is calculated using only a single reference (a ghih23 BLEU using a single reference is a
larger gain than a gain of 1.23 BLEU when using four referejhce

Results for the Arabic/English data set are also shown ineTél3. We used a large gold standard
word alignment set available from the LDC. We ran GIZA++ fouf iterations of Model 4 and used the
“Union” heuristic. We compare GIZA++ (line 1) with one it¢i@n of the unsupervised LEAF model
(line 3). The unsupervised LEAF system is worse than fouaitens of GIZA++ Model 4. We believe
that the features in LEAF are too high dimensional to uselerArabic/English task without the back-
offs available in the semi-supervised models. The basekne-supervised system (line 2) was run for
three iterations and the resulting alignments were conabivith the “Union” heuristic. We ran the LEAF
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semi-supervised system for two iterations. The best résthe LEAF semi-supervised system (line 4),
with a gain of 5.4 F-Measure over the baseline semi-supsshdgstem and a gain of 8.7 F-Measure over
GIZA++,

For Arabic/English translation we train the state of thehggtarchical model Hiero (Chiang, 2005)
using our Viterbi alignments. The translation test datadusedescribed in Table 3.5.1. We use two
trigram language models, one built using the English portbthe training data and the other built
using additional English news data. The test set is from t#8TN2005 translation task. LEAF had the
best performance scoring 1.43 BLEU better than the bassénmé-supervised system and scoring 2.79
BLEU better than GIZA++, both of which are statistically sificant.

The success of training our new log-linear model, based bmsoedels derived from LEAF, to mini-
mize thel — F-Measuréa) error criterion using the semi-supervised EMD trainingoaigym combines
the main contributions of this thesis. The BLEU score insesaachieved by this system are large for
both taskd. We now have a principled model over the alignment strudtusghich we are interested,
and we can obtain a posterior probability distribution dilexly alignments rather than being restricted
to heuristically combining the 1-best predictions of a INt@nd M-to-1 model as was previously done,
which will enable new directions for future research. Weehaliown that the predictions of our new
model substantially improve state of the art machine tedimis systems on some of the largest, most
challenging, data sets available.

4.8.2 Giving GIZA++ Access to Human Annotated Alignments

We performed an additional experiment for the French/Bhgilignment task aimed at understanding
the potential contribution of the word aligned data withthe new model and training algorithm. Like
Ittycheriah and Roukos (2005), we converted the alignmétridhinative training corpus links into a
special corpus where the parallel “sentences” consistafitye single English and French word involved
in each link. We found that the information in the links wasaShed out” by the rest of the data and
resulted in no change in the alignment test set's F-Meas@gdlison-Burch et al. (2004) showed in
their work on combining alignments of lower and higher qtyalhat the alignments of higher quality
should be given a much higher weight than the lower qualignahents. Using this insight, we found
that adding 10,000 copies of this special corpus to ouritrgidata resulted in the highest alignment test
set gain, which was a small gain @B F-Measure. This result suggests that while the link infdromais
directly useful for improving F-Measure, our semi-supsed training method is producing much larger
improvements.

4.8.3 Integrating an Arabic Name Transliteration Model

We report in this section on integrating an Arabic Name titeration model, developed by UIf Her-
mjakob. This model reads parallel sentences and outputéilkahy transliteration matches between a
single Arabic token and one or more English tokens along avitbnfidence score.

The interesting aspect of integrating this as a sub-modéhisit can not be directly integrated as a
phrase to phrase matching. This is because even when treetiédy transliteration match, this match
often does not fully account for the complete translatiamatespondence involved.

For instance, suppose that in the Arabic sentence of a pedaibic/English sentence pair the Arabic
word “Mohammed” occurs. If the English word “Mohammed” ocetwice in the English sentence, a

3We remind the reader that the French/English result is bas@&LEU calculated using only a single
reference, for which a gain of 1.2 BLEU% is large.
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transliteration model is unable to determine which one technar whether to match both. We solve this
problem by providing a constraint on the alignment. We say tiie alignment must align at least one of
the English “Mohammed” tokens with the Arabic “Mohammedké¢o, or a penalty is paid. We train a
penalty sub-model in the log-linear model which pays a fixest éor violating such constraints, which
has the effect of setting a decrease in cost which must bénelbtérom other sub-models in order for an
alignment in which the constraint is violated to more prdbdaban one obeying the constraint. Note that
this type of “OR” constraint would be very difficult to spegih the LEAF generative story.

A similar case occurs where the combination of an Engliststiteration of an Arabic content word
and one or more English function words should be aligned astaaithe single Arabic content word.
The transliteration model has a limited ability to deterenimhere English function words should be
aligned, but for more complicated decisions the decisiguires knowledge which can be found in the
other sub-models which can determine whether alignmenngéy is probable, likely nhon-head words
to attach to the English head word, etc. This is again impfeatkas a constraint, which is placed on the
alignment of the content word.

Adding constraints determined by the transliteration pgeklead to an increase of 0.2 F-Measure
over the system without these constraints. The fit on theldereent corpus was 0.5 F-Measure better,
indicating that some overfitting likely occurred.

The transliteration model only suggests a constraint favwawords in each of roughly one quarter
of the parallel sentences in our training corpus. The subehadded a constant for each constraint
violation. We also tried using one minus the confidence sesréhe penalty which did not improve
performance.

The successful integration of a feature of this type shows ¢lir approach is not limited to sub-
models which are similar to those in the generative storychutin fact be used with any sub-model
which can be scored over a hypothesized alignment of a pasaihtence pair. We believe that improving
the reliability of the confidence score and decreasing dtiadiwill increase the performance obtained
by adding this sub-model further.

4.8.4 Integrating Supervised Sub-models

The EMD algorithm can also integrate supervised knowletigeerecently obtained a larger hand aligned
alignment set from LDC for Arabic/English. After eliminag possible overlap with our discriminative
training and test sets, there were hand generated aligeni@n25,930 new sentences. We decided
to estimate two small supervised sub-models directly frbis tlata and add these sub-models to the
EMD+LEAF system.

We estimated translation tables directly from this dataer&hwere about 230,000 entries in the
translation tables, which are tables containing an Englistd, an Arabic word, and a probability. This
is a low number of parameters. For instance, compare thistivit HMM translation tables, where each
table has about 34,000,000 entries, (these tables aredsdt? and 27 in the semi-supervised model, see
Table 4.2).

We added the two supervised translation table sub-modelsntdaseline LEAF+EMD alignment
system. This lead to an increase of 1.8 F-Measure over ansysithout this supervised knowledge.
This shows that it is possible to easily integrate supedvisewledge into the system.

4.9 Discussion

The literature on semi-supervised learning generallyeskirs how to augment supervised learning tasks
with unlabeled data. Here we augment an unsupervised heptask with labeled data. This is useful
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in a wide diversity of tasks where we do not have enough ulddgata for supervised estimation of an
initial model.

We have presented an algorithm applicable in the case thaaweefew labels and a generative model
with acceptable performance when trained in an unsupefhiashion. We determine a decomposition
of the generative model into sub-models and then reintetipese sub-models as being combined into a
log-linear model. We can add additional sub-models whickewet in the original generative story, and
we use this to add both backed off forms of the sub-modelvei@from the original generative story,
and heuristic sub-models which are not directly relatedh¢odriginal generative story.

It is important to note that with this training algorithm weeanot taking steps to strictly maximize
likelihood, even though the vast majority of parametersestimated in the likelihood maximization
framework. Instead we are finding local maxima of likelihagklich are better with respect to the final
performance criterion. These are better than other redemasixima with respect to the final perfor-
mance criterion, but they could possibly be worse with resfaelikelihood under the original generative
model.

We have shown that the reinterpretation of our new model ag-dinear model and the derivation
of a semi-supervised training algorithm which can be usetfai it is an excellent way forward to
integrating knowledge sources which could not be capturela original generative model.

The semi-supervised learning literature generally addiesugmenting supervised learning tasks
with unlabeled data (Seeger, 2000). In contrast, we augrdemt unsupervised learning task with labeled
data. We hope that Minimum Error / Maximum Likelihood traigiusing the EMD algorithm can be
used for a wide diversity of tasks where there is not enougéléal data to allow supervised estimation
of an initial model of reasonable quality.

4.10 Summary

We began this chapter by redefining LEAF as a log-linear modé& showed how to discriminatively
rerank N best lists which are taken from this model. We themeggdized this to a semi-supervised
training algorithm called “EMD” which implements “Minimurrror / Maximum Likelihood” training.
We trained EMD using the original sub-models of LEAF alonghwhore robust backed off sub-models
and heuristically derived sub-models which directly cohtine trade-off between Precision and Recall.

The EMD algorithm, when coupled with features derived fromr bEAF model and trained to
maximize F-Measure, leads to increases between 3 and 9r&4soimts in alignment accuracy and 1.2
and 2.8 BLEU points in translation accuracy over strong €nénglish and Arabic/English baselines.
This strongly validates all three main contributions of thesis. We additionally performed experiments
showing that we can add sub-models which are very differem those derived from LEAF.

4.11 Research Contribution
We developed an effective semi-supervised training algorifor automatic word alignment which is

capable of using manually annotated data and of integratihgmodels which are not in our original
generative model.
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Chapter 5

Conclusion

We present the contributions of the thesis, discuss ledeansed, and then present a section combining
shortcomings and suggested future work.

5.1 Contributions

1. We have found a new method for automatically measuringnalent quality using an unbalanced
F-Measure metric (Fraser & Marcu, 2007b), which has a goecktadion with BLEU. We have
experimentally validated that this metric adequately messalignment quality for the translation
task.

2. We have designed a new statistical model for word alignmeailed LEAF (Fraser & Marcu,
2007a), which directly models the word alignment problerthait making unreasonable assump-
tions about the structure of the resulting alignments. WhEAR is trained in an unsupervised
fashion using approximate EM, it is comparable with our base Unlike our baseline, unsuper-
vised LEAF does not require the use of heuristics to gendhaténal alignment which is used to
build a SMT system. The LEAF model can be decomposed to peauith sub-models which can
be used in a log-linear model for semi-supervised training.

3. We have developed a semi-supervised training algorithenEMD algorithm (Fraser & Marcu,
2006), which automatically takes advantage of whateventifyeof manually annotated data can
be obtained. This algorithm allows for the introduction efianknowledge sources with minimal
effort. We formulated a new log-linear model using the arédisub-models of LEAF along with
more robust backed off sub-models and two heuristicalljvddrsub-models which directly con-
trol the important trade-off between Precision and Ret#d.applied the EMD algorithm to train
this model using a loss function derived from our unbalarfeddeasure metric. The EMD algo-
rithm, when coupled with sub-models derived from our LEAFd®lp leads to increases between
3 and 9 F-score points in alignment accuracy and 1.2 and 2BBBtoints in translation accuracy
over strong French/English and Arabic/English baselines.

5.2 Lessons Learned

5.2.1 Quality

The most widely used error metric in word alignment, AligmnError Rate, (AER) (Och & Ney, 2003)
is not correctly derived from F-Measure and should not beluse
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The trade-off between Precision and Recall is very impaorfafe have shown that the setting of the
parametery, controlling this trade-off, varies with the task.

Using fully connected alignments is important, see Figutedh Page 13. Without using fully con-
nected components we have unnecessary ambiguity wherdignemants which have the same transla-
tional correspondences have different scores accordingst intrinsic metrics of quality.

Extrinsic evaluation is important. Some word alignmeneegsh directed towards minimizing AER,
such as research on 1-to-1 alignment models, is not usefuideasing translation performance. This
is an important lesson for Natural Language Processingsystvhich are not generally extrinsically
validated. An example is statistical parsing where, attleas recently, a higher priority has been
assigned to increasing performance on the Section 23 tesf fee Penn Treebank than to ensuring
robust performance in clearly identified tasks. The latteuld almost always involve parsing sentences
which are drawn from a distribution which is not well cortelé with that of the Penn Treebank, and
gains in the robustness required to do this accurately mapaaovell correlated with small gains on
Section 23.

5.2.2 Modeling

M-to-N discontiguous alignments allow us to learn the ttatienal correspondences we are interested
in. These are the most general correspondences which casebdeby current hierarchical translation
systems such as Hiero (Chiang, 2005) and GHKM (Galley e2@06). Even phrase-based (consecutive
word) SMT models can benefit from alignments which do not mthleeconsecutive word alignment
structure assumption.

The quality of search is an important consideration wherasgaunable to do tractable inference. It
is important to both directly control search errors andatiyecontrol the time taken.

The beam decoding algorithm, widely used in phrase-baseabiées, does not work for word align-
ment models with complex structure. Unlike phrase-baseddiag, left-to-right hypothesis extension
using a beam decoder is unlikely to be effective because d al@gnment reordering is not limited to a
small local window and so the necessary beam would be vegg.lalfe are not aware of admissible or
inadmissible search heuristics which have been shown tdfbetiee when used in conjunction with a
search algorithm similar to A* search for a model predictivgr a structure like ours.

The problem with the blow-up in parameter space involvedirape-based models such as the Joint
model (Marcu & Wong, 2002) is partially solved by using thetievord structure. In particular, this
appears to be a realistic assumption given the amount ofiateow have, and we also have a straight-
forward path to increase the richness of the sub-modelssipanse to additional training data, by simply
reducing reliance on word classes and further relaxing itiondl independence assumptions. The M-
to-N discontiguous alignment structure using the head vesglimption is also faster to search than a
pure phrase-based structure as the translation depeedencbne side are only dependent on the head
word on the other side (angdwhich is a flag indicating whether the cept on the other sideains just
one word). In phrase based approaches translational pommdsence is calculated using the full identity
of both cepts. The decomposition of costs using the head assdmption means that adding a non-
head word to a head word is an operation which incurs adeitioost but does not cause all other costs
incurred by that cept to be reevaluated. In phrase-base@lmady change to a cept causes all costs to
be reevaluated.
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5.2.3 Semi-supervised Training

Combining discriminative training in a loop with steps ded from EM which increase likelihood is an
effective approach to semi-supervised training of moddikvwere traditionally trained in an unsuper-
vised fashion using EM.

Symmetrization heuristics are surprisingly powerful, boe no longer required for LEAF, which
directly models the desired alignment structure. We weit@lly surprised that the predictions of the
symmetrization heuristics were no longer useful as a suteibut in retrospect it makes sense as they
are the product of simple rules which are effectively subsdiin the LEAF model.

Deriving an appropriate training criterion is importants #&ve showed in Chapter 2 AER is not a
good training criterion, which shows why our initial expagnts in discriminative training, (Fraser &
Marcu, 2005), failed to produce an improvement in BLEU.

Backing off the rich features of LEAF is important, partiady for difficult language pairs like
Arabic/English, and combining the original rich featuraiwa backed off version in a log-linear model
is an effective way of doing this.

Directly tuning the trade-off between Precision and Rdsathportant when working with F-Measure.
This has an analogue in translation, which is the optimiratif the BLEU length penalty (Koehn et al.,
2003), which is required to obtain good performance usingBL

Scoring full hypotheses allows for the integration of vaéchifeatures scored over the full alignment,
a subject we have only scratched the surface of with theriatieq of the name transliteration feature.

The search performance dramatically affects the perfocema our discriminative algorithm. We
have found that search performance is much more importaimgithe D-step than it is when predicting
Viterbi alignments for the entire training corpus. Fortteta we only have to execute search for the
discriminative development set during discriminativertitag. For instance, we search for the Viterbi
alignment for only the 1,000 sentences in the developmerfose¢he Arabic/English task (the search
is performed once for each iteration of the loop inside ofEhstep, see Figure 4.1). Because of this
we can spend a significantly longer time on each sentencelpairg discriminative training than when
we perform the E-step (which requires finding the Viterbgaihent of 6.6 million sentence pairs in the
Arabic/English case).

5.3 Shortcomings and Future Work
5.3.1 Problem Definition: What is a Word?

We have implicitly specified that a word is a space-sepatatezh output by a tokenizer. The tokenizer's
primary purpose is to separate punctuation from words. dkenizer additionally performs light deter-
ministic processing of morphological phenomena. For imstathe French tokenizer we use separates
obvious clitics from the words they are attached to (e.gest’ is mapped to “ne est”) and maps mas-
culine and feminine articles to a single token (which is atabkle for translation to English which does
not make this distinction). However this approach is togméfor many language pairs.

The LEAF generative story generalizes well to the case tfiatration in one language is expressed
lexically and not present in an easily accessible fashiothénother language. For instance, for the
application of Chinese/English machine translation LEAfiead-word” concept seems to work well.
An English phrase such as “the man” is often translated asgesChinese word meaning “man”, while
the definiteness of this word is usually marked by syntadiienmmena which would be difficult to
model. A good LEAF alignment would be a head-word link betw&aglish “man” and the Chinese
word for “man”, and then an association from English nonehgard “the” to English head word “man”.
The g distribution in LEAF is capable of modeling that the wordéthas a high probability of being a
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non-head word, while the_, distribution can model that non-head words in the word oldsish “the”
is in have a high probability of being associated with a heattwhich is one word to the right.

Chinese (and other Asian languages such as Japanesedm@atitrequire word segmentation, which
separates short sequences of Chinese characters intos'Wthis is because Chinese is written without
the use of spaces to separate words). Automatic word segtitenis itself an active area of research. A
Chinese word segmenter is typically trained in a superviashion from a gold standard segmentation
specified by human annotators, but it is not been carefuligietl whether existing segmentations are
a good choice for machine translation purposes. In factaly ve possible to create a new generative
story by adding a few steps to the LEAF generative story whietw the Chinese word segmentation
to be modeled simultaneously with word alignment, rathanthandled as a preprocess as is currently
done. This would have the interesting effect of allowing edveegmentation choices to be informed by
the English words in the parallel text. Most likely an inits®gmentation (or segmentation knowledge
source) would need to be initialized using supervised kadgé, but the segmentation could then be
allowed to vary during the alignment process, and this migtermine a final segmentation which is
more useful for translation than existing segmentations.

Unfortunately, the LEAF generative story does not modelitiiemation systematically present in
“pieces” of words (e.g. morphological phenomena, inclgdiarticularly clitics). Such generalization
would require a source of morphological knowledge. Foransg, consider again English “the man”,
but this time consider how it should be aligned with Arabioghksh “the man” might be aligned with the
single Arabic token “al-rajul”, where the prefix “al-”" is “#1, and “rajul” means “man”. Here again the
g distribution in LEAF is capable of modeling that words likk&” have a high probability of being non-
head words; again, the_; distribution can model that non-head words in the word ctdsshe” are
often associated with head words one word to the right. B&EEan not learn that the “al-" in this case
indicates that it is more likely that “the” should be in thedlish cept aligned with “al-rajul”. Modeling
this in a language independent fashion would be difficutiychieriah and Roukos (2005) defined sub-
models which model this type of information for the Arabinffish word pair case and showed that this
is effective. We could similarly define language pair spedfib-models to do this. However, we would
be more interested in finding a general framework to sohegtoblem. Such a framework would ideally
be language independent, but might require supervisedrpdata (in the same way that integrating
Chinese segmentation might require access to a superviesdddge source, as we already discussed).
We would be interested in developing a language indeperaedgansion of the LEAF generative story
which is able to consider phenomena like the “al-” in “alutaj(and possibly align such morphemes
separately), but we recognize that this is both concepgtaall computationally difficult without access
to very highly accurate sources of morphological knowledge

5.3.2 Quality

One shortcoming of our work on quality metrics is that we hanevided a metric with a tunable param-
eter. This necessitates experimentation to determine b@wvaluate with each new task. We would be
interested in understanding the dependency ofitparameter more fully. For instance, we could study
whether there is something about the language pairs ingtptiie quality and style of the gold standard
annotation, or even the quantity of training data which sétpexplain why a particular setting works
best.

Ideally we would like to derive a metric which does not haveiable parameter but has the same
performance as unbalanced F-Measure does whg@appropriately tuned. CPER (Ayan & Dorr, 2006a)
is an interesting step in this direction. CPER calculatdartz®d F-Measure over the phrase pairs ex-
tracted from a hypothesized alignment (these are the sanasebpairs as are extracted for use in the
translation model of a phrase-based MT system), compahmig with the phrase pairs extracted from a
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gold standard alignment. Unfortunately, CPER has not beews to predict MT performance. It seems
likely to us that there should be a trade-off between Preciand Recall in comparing phrases extracted
as well, but possibly this trade-off will be less importaman in the case of word links. We would be
satisfied if we were able to use a singlgparameter in conjunction with a CPER-like metriedfwere
constant for all of our tasks.

Another shortcoming of our work is that we only tested the BlLRetric. The BLEU metric shows
that is likely that our noise and oracle models, used fofiaidlly degrading and improving alignments,
produce regular changes in the quality of machine tramsiatystems built from these alignments, but we
could obtain even stronger evidence. Ideally we would likege human annotators to judge the output
of MT systems built using the alignments, but this would behgritively expensive and is probably not
necessary in this case. Instead, METEOR (Banerjee & Lawie5Ris a promising automatic metric
which we would be interested in trying as it has been shownaie tbetter correlation with human
judgments than BLEU.

Our work on quality is dependent on measuring the quality sihgle predicted alignment, such as
the Viterbi alignment of the LEAF model. However, there gopraaches to building MT systems which
are trying to utilize the full distribution over alignmentsther than the most likely single alignment. As
this body of work matures, we would be interested in deriarguality criterion for a distribution over
alignments which is finer grained than simply taking the ntiksty prediction and scoring it. This new
quality criterion should allow us to evaluate the qualitytled entire distribution.

5.3.3 Modeling

One large disadvantage of the LEAF model is the intractgbili exact search. Model 4 has the same
problem. We need to solve search problems during both paeamstimation and prediction of the final
Viterbi alignment. As we have discussed previously, emgstinodels with tractable exact search make
unrealistic assumptions about alignment structure whichat model the word alignment problem with
sufficient fidelity. We have defined a local search algorithtricl results in good F-Measure scores,
by taking steps to apply some of the knowledge gained by theareh community in solving problems
such as the Traveling Salesman Problem in our implementafi@ restarting “Tabu” search (Glover,
1986). However, our current implementation is very slove(@@pendix C.1 for detailed timings and a
discussion of how to program a faster implementation). \Weaéso hopeful that we could use a dynamic
programming approach which would consider many more algms(see Appendix C.2).

Another disadvantage of the LEAF model is the Viterbi appr@tion used to carry out the M-
step. In previous experiments using GIZA++ we have foundubking the Viterbi assumption is usually
not worse than using the “neighborhood” assumption, whistolives calculating the probabilities of
alignments which are one search operation away from theb¥isddignment. However, there is reason to
believe that this might not be the best we could do. In our wadth LEAF we have significantly reduced
search errors, which means that the alignments we find arigloéhquality. It is likely that the N best
lists we generate are a better approximation of the seaezteshan the neighborhood of the Viterbi used
by GIZA++. In the short term, it would be interesting to trytiegating LEAF using a normalized N best
list of a large size similar to those generated during thedp-ébout in this case calculated over the entire
training corpus). In the longer term, it would be interegtio estimate LEAF by solving the alignment
problem such that very large N best lists or an alternatifieieft representation of many hypotheses
can be used.

One aspect of the LEAF model we have not fully investigatethésuse of word classes. We use
source word classes derived using a greedy maximizatioheoptobability of the monolingual source
corpus (Och, 1999), and follow the same procedure to deriw& wlasses for the monolingual target
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corpus. These are the same word classes as are used in dimebadée would be interesting in con-
ducting a study to see if better word classes, for instandeatkefrom Part-of-Speech tags, might help
the performance of LEAF.

5.3.4 Semi-supervised Training

Our approach to semi-supervised training, Minimum Erroraxihum Likelihood training using the
EMD algorithm, has been shown to work well, but it could beter improved. We would be interested
in conducting studies to determine the point at which thessuralgorithm begins to overfit the discrim-
inative training set. It would also be helpful to determinevaiich point adding additional sub-models
begins to tax the current optimization’s ability to find adbenaxima reasonably close to the global
maxima.

A closely related problem is the problem of feature selectih our current implementation sev-
eral of the features receive very low scores and sometineek biest choice (taken by rescoring the final
hypothesis list from the D-step) is not changed by remouiege features. A principled approach to fea-
ture selection would mark these features as ineffectiieeear the process and this might systematically
result in convergence to better solutions for the discratie training problem.

One obvious area of improvement for our semi-supervisephalent model is to use language spe-
cific sub-models as we already mentioned. In particulagrésting work has been done for morphology
in connection with word alignment. Corston-Oliver and Gan@004) describes an approach for nor-
malizing the inflectional morphology of German and Englislgain an improvement in alignment qual-
ity measured by AER. We documented a simple approximatemasting algorithm, (Fraser & Marcu,
2005), which was used to gain an improvement in AER. NiessenNey (2004) provides an interest-
ing approach to integrating morphology in word alignmentitigrpolating lemma and inflected word
probabilities in a principled fashion. The IBM researchgrchas used Model 1 training combined
with sophisticated morphological segmentation of Arabitr&ain Arabic/English word alignments (Lee,
2004), and more recently defined a discriminative word atignt model specifically for Arabic inte-
grating morphological components (lttycheriah & Roukdd)%). These works and several others point
to the possibility of integrating morphological modelingtwvord alignment. One could integrate fea-
tures either just into the word alignment model, or possibty both the word alignment model and the
translation model in a coordinated fashion.

We are also interested in the integration of more powerfodmwdels which can be drawn from other
areas covered in the natural language processing literaiivie suggest three examples here. Drabek
and Yarowsky (2004) showed that syntactic rules can be wseeorder the corpus so as to decrease
problems in aligning syntactic clause level phenomena,@ultins et al. (2005) has generalized this
approach further. Our model is likely to benefit from the useependency parses to help determine
likely head word relationships in a manner similar to workaged by Cherry and Lin (2003), but
instead implemented as a sub-model added to semi-supghEsE-. Work on determining multi-word
units, which is often done using unsupervised models, mayige interesting features for helping to
inform which words might be grouped together as a transiatianit, though this decision is ultimately
a bilingual decision which will be made differently for difient language pairs (e.g. the English words
grouped together would differ for the English/Arabic andjish/German cases). Work of this type can
be easily integrated into our framework as we always scongpbete hypotheses, and so no limitations
requiring the decomposing of features over small piecekeatignment are necessary.

Finally, we would like to apply the EMD algorithm to problerostside of word alignment. There is
a tremendous interest in algorithms which work well withyvemall quantities of labeled data and larger
guantities of unlabeled data. EMD solves this problem, iuiisi current formulation is tied to the word
alignment problem. We would be interested in providing aemgeneral formulation of EMD. Another
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application of EMD, perhaps outside of the area of natunagleage processing, is an opportunity we
would be very interested in pursuing.

5.3.5 Using Word Alignment

We would be interested in applying the EMD algorithm in cowgtion with LEAF to generate align-
ments for applications other than MT. Two obvious applimasi which come to mind are Cross-Lingual
Information Retrieval (CLIR) (Hiemstra & de Jong, 1999; Xuaé, 2001; Fraser et al., 2002) and para-
phrasing (Pang et al., 2003; Quirk et al., 2004; Bannard di€2ai-Burch, 2005). It would be interesting
to see if the F-Measure criterion derived for translatisksais useful for these tasks as well. Our in-
tuition tells us it that it should be, but this must be emggilli¢ verified. We would need to calculate an
appropriatex for each task. As an example, we were interested to obseavéntivork by Riezler et al.
(2007) the authors reported that they needed to manualtgase the number of NULL alignments on
one side of a specialized corpus they were aligning for ugpigry expansion. We expect that these
sort of trade-offs could be handled automatically in ounfeavork by providing a small number of gold
standard word alignments and appropriately adjustindt would also be very interesting to try using
alignments generated following our approach to build resesifor CLIR and paraphrasing, and these
applications might provide another source of extrinsiédalon for our work.

We also envision modifying LEAF's generative story to bettedel other applications. For instance,
LEAF could be modified to directly model the problem of sumizetion, in a fashion similar to work
by Daung Il and Marcu (2005). This requires a generative story Wiikows large amounts of deletion
in aligning the document to the summary. A similar problerthiesmodeling of the generation of closed
captions for television.

The present best practice of extracting translation rudeglirase pairs in a phrase-based SMT sys-
tem) from a single alignment (such as the LEAF Viterbi aligmt) is well established. But as we
discussed in Section 3.6.7 research has begun into estgrae translation model from a distribution
over alignments. A first approximation of this approach riglto estimate rules from the N best lists
we can currently generate, weighted by the posterior piibtyatif the alignment. We might also want to
“second-guess” the extraction of phrase-pairs from thé fiBAF Viterbi alignment in a fashion similar
to the work of Deng and Byrne (2005). Given a new test set, tissd their alignment model to try
to determine probable translations for phrases which oedun the training data but were aligned in
such a way that extracting a translation rule was impossitiés revisiting of the alignment given a test
set is a form of inexpensive transductive learning. As waorkhie area of estimating from more gen-
eral output distributions than the Viterbi alignment pregges, we envision the modification of LEAF
to output a distribution over alignments which assigns rere probabilities to a large portion of the
probable alignments. This will necessitate the modificatibtranslation systems to estimate rules from
this distribution.

A closely related advance would be to refine LEAF itself intwamslation model. The success of
the Hiero hierarchical translation model (Chiang, 200%)gasts that this would be possible. However
this would be an ambitious research program as we would meg@ate a decoder integrating language
modeling capability, and most likely we would have to createery different search algorithm. We
would also need to add new sub-models to the model to scarsldtéons. In particular it would be
important to allow the model to memorize more of the contbantis necessary in word alignment. A
less ambitious project which could be used as a stepping $tovards this final goal would be to score
the LEAF alignment model as a feature in a hierarchical decada similar fashion to the “lexical
smoothing” (scoring of the alignment links used to genetetaslation rules) already implemented in
Hiero, or even as “lexical smoothing” in a phrase-based dec(particularly if it were a more general
phrase-based decoder which supported gaps in the phrases).
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Appendix A

IBM Model 4

A.1 Introduction

The definitive work on early generative models of word aligmtnfor machine translation is by Brown
et al. (1993), which describes a group of models called tiv Models. We focus on IBM Model 4 in
particular. An overview of other generative models for walidnment is given in Section 3.6.

A.2 The IBM Models

Brown et al. (1993) developed five statistical models of gfation (IBM Models 1 through 5) and
parameter estimation techniques for them. The models wesignked to be used in a pipeline, where
each model is bootstrapped from the previous model.

For ease of exposition, the source language for the tramskask is referred to as “French”, and the
target language is referred to as “English”, although treesebe any language pairs in practice. The
translation problem is defined as given a French stfinfiind the English string according to Equation
A.l.

€= arginax Pr(e|f) = arginax Pr(e) = Pr(fle) (A1)

wheree represents any potential English string made up of Englstus: Pr(e) represents the true
distribution over English stringsPr(f|e) represents the true distribution over French strings geeer
from English strings.

ConsiderPy(f|e) to be a model ofPr(f|e). If we introduce a hidden variablerepresenting word
alignments, we can sum over these variables, see Equatibn A.

Py(fle) =Y Po(f,ale) (A.2)

For our task, which is word alignment annotation, we havedfiggingsf ande, and we wish to
select the best alignment according to the modéelvhich we do in Equation A.3.

4 = argmax Py(ale, f) = argmax Py(f, ale) (A.3)

The only alignments in the IBM models which can have non-peabability involve links from one
English word to zero or more French words. We call alignmeviich can have non-zero probability
within a model “feasible” in that model. Not all French wondasist be aligned with an English word
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Figure A.1: French/English example, gold standard (satidd) and best possible Model 4 decisions
(dashed lines)

which appears in the sentence; those that aren’t are coadide be spontaneously generated. For
reasons of notational convenience we consider them to geealito a so-called NULL word which we
will denoteey.

A.2.1 Introduction to Model 4

We concentrate on Model 4, presenting the generative dtweymnathematical formulation, and the un-
supervised training algorithm for the model using a varizthe Expectation Maximization (EM) al-
gorithm. We also outline how Model 4 is used in practice, udahg the heuristic steps applied to the
alignments predicted by the model in order to produce a fimathalignment.

Brown et al. (1993) defined a model Bf-(f|e) called Model 4. IBM Model 4 is a generative model,
which is a model of how a French strinfgis generated given an English string The steps followed
determine a unique alignmednt

To generatef from e (using steps which determing, the following generative story is used. We
first pick for each English word a fertility value, which isetmumber of French words which will be
generated from it. Then we choose a fertility value for theLlNUEnglish word conditioned on the total
number of French words generated from the non-NULL Englishds. For each English word including
the NULL word we pick the identity of the French words that gemerated from it. Finally, we choose
the position of each French word in the French sentence.

A.2.2 Example of Model 4 Generative Story

We start with an English sentence. We will use a shorter seetsimilar to our example from the
introduction which is shown in Figure A.1. The gold standdettisions are the solid lines, while the
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best alignment which is feasible in Model 4 is indicated wdtished lines. Here are the Fertility and
Translation decisions which we would like the model to makeour example:

e “They” is Fertility 1. It generates French “ils”.

e “do” is Fertility O.

e “not” is Fertility 2. It generates French “ne” and French §pa
e “want” is Fertility 1. It generates French édirent”.

e “t0”is Fertility O.

e “spend” is Fertility 1. It generates Frenchépenser”.

e “that” is Fertility 1. It generates French “cet”.

e “money” is Fertility 1. It generates French “argent”.

e The English period is Fertility 1. It generates the Frenctiqae

e The English NULL word does not generate any spurious Frerariasy

Because of the 1 to many assumption, we can not draw links frattm English “do” and “not” to
French: “ne” and “pas”. We also can not draw links from botbr"‘and “spend” to “&penser”. This is
a serious problem. We present a new model called LEAF in @n&pivhich overcomes the 1-to-many
assumption.

A.2.3 Model 4 Generative Story

We present the full Model 4 generative story, following theesition of Brown et al. (1993) very
closely. We do make one assumption differently from Browale{1993), which is that the placement
position is only dependent on the previous placement pos(in IBM Model 4 there is an additional
conditioning on automatically derived word classes, bubwat this to simplify the presentation). Note
that there is a non-zero probability of “failure”, i.e. tkees a non-zero probability that the generative
story fails to generate anything. This means the model isidefi wasting some probability mass.

The variabld refers to the length of the English senteacandm refers to the length of the generated
French sentencg. ¢; is the number of French words generated by the English wopdsition i. The
identity of these words is;;, (k ranges from 1 t@;), and their French position is;;. The termp; refers
to the previous English word to the English word at positiovhich has fertility greater than zero,, is
the “center” of the words placed by the previous English wafrdon-zero fertility to the English word
at position i. The calculation of, for a non-zero-fertility English word at position z is dabed in
equation A.4, below.

The Model 4 generative story:

1. Foreach = 1,2, ...,1 choose a fertility valug; according to the distribution(¢;|e;).
2. Choose a fertility valueé, according to the distributiong (¢ | 22:1 ;).

3. Letm :¢0 + 22:1 ¢1

4. For eachi = 0,1,...,] and eachk = 1,2,...,¢;, choose a French word; according to the
distributiont(7;x|e;).
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5. Foreach =1,...,l and eactk = 1,2, ..., ¢;, choose a position;;, as follows:

e If £ =1, chooser;; according to the distributiot; (7;1 — ¢p;)

e If &k > 1, chooser;;, according to the distributiod ; (7, — 7;,—1) Subject to the constraint
thatm;,_1 < mk

6. If any position has been chosen more than once, retururédi

7. For eachk = 1,2, ..., ¢y choose a positiorry, from ¢yo — k& + 1 remaining vacant positions in
1,2, ...,m according to the uniform distribution.

8. Let f be the string withfm;, = 7%

The calculation of the “center” of the French words genet&tem a non-zero fertility English word
at positior: in the English sentence is shown in Equation A.4.

Pi
¢ = ceiling(y " mi /i) (A.4)
k=1

We call French words generated from English words (not iiolyi the special English NULL word)
“non-spurious”, as their generation is explained by theliBhgvords we observe. The number of non-
spurious words isn/, which is the sum of the fertilities of the non-null Englistorsds, as shown in
Equation A.5.

!
m = Zd)i (A.5)
=1

For notational reasons we annotate unexplained Frenchsveardbeing generated from the English
NULL word, but this does not directly reflect the generativeqess. These French words are called
“spurious”, as they aren’t being generated by the Englistds/ave observe. In the generative story, these
words are generated as a part of the process of generatingpuoious French words. The parameter
p1 represents the probability that as we generate a non-gguFiench word we also generate a single
spurious French word, whilg, is the probability that as we generate a non-spurious Fremet we
don't generate any spurious French wopgd ¢ p; = 1). The number of spurious words generated is
modeled using a binomial distribution where the numberiafgris m’ and the chance of trial success
(generating a spurious word) s (the chance of trial failure i$ — p; = pg). The equation is given in
Equation A.6.

/ ’
no(¢olm’) = <Z)>p6” “Popie (A.6)
The decisions made in a particular generative story can lmpethto a unique alignment When
working with 1 to many alignments, a compact representaifan alignment which is sometimes used

is a vector of lengthn (the length of the French sentence), which indicates foin &aench wordf; the
position of the English word which generated it (i.e., thé&uga in the vector range fro .., ). The
reader can verify that given the particular generativeystartlined for our example (with the addition
of distortion operations to specify the placement of thedspiwe generate the unique French string and
unique alignment shown in A.1. Under the Model 4 generativeysgiven a starting English string
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and the decisions made (which did not result in “failure”g generate a unique French striigind a
unique alignment, and this is always the case

A.2.4 Model 4 Mathematical Formulation

Given an English string, a French stringf and a candidate alignment we would like to look up
p(f,ale). The formula for Model 4 is in Equation A.7. See Equation A08 the expansion of the
simplified distortion calculation which we abbrevidigy (7).

l l L ¢ L ¢
lH ”(@‘ei)] no(dol Y &) [T TT tixles) [T T Dibtran (A7)
=1 i=1 =0 k=1 i=1 k=1
[ d-c) it k=1

A.2.5 Training Model 4 Using Expectation-Maximization
A.2.5.1 Introduction

In this section we present the training of Model 4 using thpdetation-Maximization (EM) algorithm.
EM is an algorithm for finding parameter settings of a modeiclvimaximize the expected likelihood
of the observed and the unobserved data (this is called thelete data likelihood; the incomplete data
likelihood is the likelihood of only the observed data). dititzely, in statistical word alignment, the E-
step corresponds to calculating the probability of allrtigents according to the current model estimate,
and the M-step is the creation of a new model estimate givewolaapility distribution over alignments
(which was calculated in the E-step).

Model 4 is a generative model with carefully controlled céexjty. In Model 4, given strings
and f, every particular generative story which explains hpwas generated from represents + 2m
decisions. There arkfertility decisions over the English string and there is agyation decision and
a placement decision for each of theFrench words. It is important in EM to control complexity. If
complexity is not carefully controlled, there can be a b@agards simpler structure, by which we mean
solutions where less decisions are made. If this is the teseheuristics must be used to compensate.
It is difficult to craft an effective generative model of woatignment which has a constant number of
decisions for use with EM.

A.25.2 E-step

In the E-step we would ideally like to enumerate all possdlignments and label them witi{( f, ale).
However, this is not possible when using an alignment mosl@laanplex as Model 4. As we will see
below in the discussion of the M-step, we would at least likértd the most likely alignment given the
model. This is referred to as the Viterbi alignmeitn this formula:

4 = argmax Py(ale, f) = argmax Py(f, ale) (A.9)

1The inverse is not generally true; given an English steing French stringf, and an alignment,
there is not only one particular generative story that wdade generatefl anda from e unlesspy = 0
(such as in our example).
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This is a repeat of equation A.3 which represents the taskdifyy an approximate Viterbi alignment
to output as the final alignment output from the alignmentpss. Here, in Equation A.9 we are referring
to the search for an alignment during training. We can vaisytthbe, for instance, the search for the 10
most probable alignments (where a probability distributiwer the 10 alignments would be used for the
M-step).

The calculation of the Viterbi alignment for IBM Model 4 wasopen to be NP-hard by Udupa and
Maiji (2006). So we take the most probable alignment we can find assume it is the Viterbi alignment.

A local hillclimbing search algorithm is used (Brown et dl993). The search starts from the pre-
sumed Viterbi alignment found during the previous itenatdtraining. Brown et al. (1993) recommends
instead starting the search from the Viterbi alignment dfliBodel 2, but we do not believe this is more
effective. All alignments which are reachable by two seanpbrations from the current best alignment
are considered. One search operation is to change the gieneatecision for a French word to a different
English word, and the other search operation is to swap therggon decision for two French words.
The two search operations are applied exhaustively, anidberesulting alignment is chosen; this is
iterated. The search is terminated when no improved aligmicen be found.

A.2.5.3 M-step

For the M-step, we would like to take a sum over all possitignahents for each sentence pair, weighted
by p(ale, f) which we calculated in the E-step (note that the labels &bil the E-step must be renor-
malized to sum to 1 for each f pair, as they are estimates(ff, ale), and we would like estimates of
p(ale, f)). As we mentioned, this is not tractable.

We make the assumption that the single assumed Viterbi caiséxsbto update our estimate in the
M-step (which we calby, (ale, f), the probability of the alignment given the senten@md the sentence

f):

1 fa=a

Note that when discussing “Viterbi training”, we are abgsihe term “Viterbi alignment” to mean
the best alignment according to the model that we can findhediest alignment according to the model
that exists.

We estimate new parameters from the assumed Viterbi aligtenieund during the E-step by simply
counting events in the assumed Viterbi alignments, sineg #re assumed in equation A.10 to be the
only alignments of non-zero probability. We collect the otsulisted in Figure A.2. After collecting the
counts, for each condition, we normalize these counts ddlieg sum to one, which provides us with
the model estimate for the next E-step, listed in the follmpéquations:

t(fle) = ci(fle)/ fZ c(f'1e) (A11)
n(dle) = ca(dle)/ ; cn(@']e) (A.12)

di (D)) = car(B])/ ; car (D)) (A.13)
d>1(D)) = cd>1<Aj>/; ca1(05") (A.14)
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translation countsf is a French word andis an English word

fertility counts, ¢ is the number of words generated by the English word
distortion (movement) counts of the first French word tratesl from a single English
word (looking from left to right in French sentence)

ca>1(2\j) | distortion (movement) counts of other French words traaedlfrom a single English
word
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Figure A.2: Counts collected in unsupervised Model 4 tragni

Clearly the Viterbi training approximation is related to Bkdining, which tries to maximize the
complete data log likelihood. Neal and Hinton (1998) anedi/approximate EM training and motivates
this general variant. We would like to eventually try usingrabability estimate over a larger set of
hypothesized alignments to reestimate the model, but firalset to use which will help the performance
of the estimated models is an open research problem.

A.2.6 How Model 4 is Used in Practice
A.2.6.1 Open Parameters Used with Model 4

In practice,py is not usually trained using likelihood (see (Brown et ab93) for details of count
collection). Insteag, is set to a fixed value which produces good quality alignments

The GIZA++ Model 4 implementation used in our experiments tveo smoothing parameters to
smooth the fertility distribution which are not part of theginal Model 4 formulation.

We set these three open parameters based on final trandatdity, in an expensive grid-search
process which involves building a full SMT system for eachapaeter setting we would like to try. In
our work on semi-supervised training presented in Chaptes 4vercome this difficulty and show how
to efficiently train such parameters using a small amountotirannotated word alignment data.

A.2.6.2 Heuristic Symmetrization for the IBM Models

All of the IBM Models assign zero probability to alignmentswhich more than one English word is
aligned to a single French word. This is a poor assumptioeallg we would like a model to be able
to assign non-zero probabilities to all of the possibleratignts, which includes alignments that violate
the one to many assumption.

In practice, in current state of the art machine translatigstems, heuristic techniques are used
to obtain M-to-N discontinuous alignments. For 1-to-N msdée the IBM Models, the following
approach is used:

e We are supplied with a bitext to be aligned, a 1-to-N aligntreystem, and a symmetrization
heuristic.

e Generate the predicted 1 to many alignment in the directiogligh to French. In this alignment
one English word aligns to zero or more French words. Caltéisalting alignment Al.

e Generate the predicted 1 to many alignment in the directrené¢h to English. In this alignment
one French word aligns to zero or more English words. Caltélsalting alignment A2.
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e Combine Al and A2 into a many to many alignment using a syninagton heuristic. Call this
many to many discontinuous alignment A3

e Return A3

We briefly discuss the three symmetrization heuristics ddffsy Och and Ney (2003). For discussion
of other heuristics the reader is referred to Koehn et al0320

e The “Union” symmetrization heuristic involves taking thaion of the links in the A1 and A2
alignments. This results in an alignment having M-to-N digmuous structure.

e The “Intersection” symmetrization heuristic involvesitakthe intersection of the links in the Al
and A2 alignments. This will result in a 1-to-1 alignmenusture.

e The “Refined” symmetrization heuristic starts from the &irgection” 1-to-1 alignment, and adds
some of the links present in the “Union” M-to-N discontingaalignment following the algorithm
defined by Och and Ney (2003). This results in an alignmentadoimg 1-to-N and M-to-1 cor-
respondences, but importantly the words in the minimalsletional correspondences must be
consecutive, so this is not as general as the “Union” heciriShis heuristic is described in further
detail in Section 2.2.3.

Use of these heuristics is undesirable. We would ideallyausedel which is able to assign non-zero
probability to many to many discontinuous alignments diyeavithout requiring the use of heuristics.
We present the LEAF model in Chapter 3 which is able to do this.

A.2.7 Discussion

We have presented the important issues behind the work afBet al. (1993). We have shown how
Model 4 works in detail, and have discussed the structusalraptions that were used in all of the IBM
models. In addition, we have discussed how Model 4 is usedactioe. We hope that the reader now
has an understanding of the previous state of the art ungspdrsolution for word alignment and some
idea of its strengths and weaknesses.

For the baselines in this thesis, we directly compare restith the freely available GIZA++ software
package, which is used to generate the alignments for mangydieEms.

However, we have also reimplemented the Model 4 alignmerdemoWe have implemented our
code so that we can calculate presumed Viterbi alignmentsléalel 4 on many servers using a small
memory footprint, which is a large advantage over GIZA++afttas a large memory footprint and can
only use one server.
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Appendix B

Details of Introductory Experiments

B.1 Building Translation Systems with Word Alignments

SMT systems are usually broken down into two types of motielftanslation model, which is a model
of translational correspondence between the source ayet tanguages, and the language model, which
is a model of well-formed sentences in the target language.

The translation model is estimated using a bitext of pdratherrce language sentences and target
language sentences and an alignment of that bitext. Thelmetimated from the bitext is called the
translation model because it models the mapping of a sounzse to a target phrase. The language
model is estimated only from the target language text, g imodel of well-formed target language
sentences. We can use additional target language text whiubt from the bitext to help us build a
better language model.

In the experiments presented in this section, we use thariflementation of the alignment tem-
plates system (Och & Ney, 2004), which is a phrase-based $aiElation system (Koehn et al., 2003).
This is a log-linear translation model (Och & Ney, 2002). Tbg-linear model is trained to maximize
an automatic translation quality metric called BLEU (Pa&piret al., 2001). BLEU is an automatic eval-
uation metric which measures translation quality. BLEU basn shown to correlate well with human
judgments of quality. To maximize BLEU we use the Maximum RLEaining algorithm (Och, 2003).
This algorithm uses the translation “dev” set as trainingda train the weights of the log linear model
S0 as to maximize BLEU.

In phrase-based SMT, we estimate the phrase lexicon (th¢ impsrtant part of the translation
model) using a word alignment of the training bitext. We waty how we construct this word alignment.
This is the only factor varied in all experiments in this tises We will always compare two or more
systems using the same language models and the same hitetttetiwo alignments of the bitext will
be different.

For all of our experiments, we use a language model built ertdtget language training data and a
large language model built on news data.

We evaluate an alignment by building a machine translatystesn, translating a machine translation
test set and evaluating it using BLEU. For ease of reading wiépty the BLEU score by 100, and for
this reason we report “BLEU %" in our results.

We present our own word alignment systems in Chapters 3 ahdtllis section we present results
based on our baseline, a widely used unsupervised alignmneceedure, which is used as the baseline in

INote that because we only allow the final alignment to vaatiiees based on IBM Model 1 (a lower
order alignment model) are also held constant.
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most papers on word alignment. This approach uses a freailjahle software package called GIZA++
(Och & Ney, 2003), which implements several alignment med&I1ZA++ implements both the IBM
Models (Brown et al., 1993) and the HMM word alignment modé&idel et al., 1996). In our baseline,
we use heuristic post-processing of the output of GIZA++#sasandardly done.

GIZA++ implements both Model 4 and the HMM using a few extensi which were not in the
original formulations. We use IBM Model 1, the Aachen HMM daii8M Model 4 in that order (these
models “bootstrap” from one another, see Appendix A for ni@tils). The output of these models is an
alignment of the bitext which projects one language to aiB1ZA++ is run end-to-end twice. In one
case we project the source language to the target languadyi #he other we project the target language
to the source language. The output of GIZA++ is then postgssed using so-called “symmetrization
heuristics” to produce a single alignment by combining therse to target alignment and the target to
source word alignment output by the models. We describe Médad the heuristic symmetrization
algorithms in more detail in Appendix A.

B.2 Experimental Details for the Romanian/English Weak Oracle
Experiment

We would like to substantiate the claim that improved alignis will lead to improved MT systems. We
show that there exist alignments of a fixed bitext which agaificantly better for translation than the
alignments generated by our baseline system. We genemitmfioved alignments by using an “ora-
cle”, a system which (in an unfair fashion) tells our alignthgystem how to improve the alignments. We
measure phrase-based statistical machine translatidorpence both when using our baseline align-
ment system, and using the “oracle”. We show that alignmeatsbe improved by showing that the
“oracle” alignments lead to higher performance than theles.

Experiment overview: We report on a “weak oracle” experiment. We select a traibibgxt (par-
allel sentences in Romanian and English) to be aligned utmee different experimental conditions.
For the baseline, we use the current state of the art alighsystem to align the training bitext and then
build a machine translation system and translate a heldestiset. The second experimental condition
is to show that our reimplementation of the baseline hasticEmperformance (this is only necessary
because we need to use our reimplementation for the wealeprdeor the “weak oracle”, we allow
the word alignment system access to gold standard aligreneétite test data to force it to make better
alignment decisions on the training bitext. The differemdt the baseline is that a “weak oracle” told
the alignment system how to align the training bitext wedk this test set). We show that the translations
of the test data generated by an MT system using this alighime higher quality than the translation
which was generated by the baseline system. This shows isterse of better alignments than those
generated by our baseline system.

Experiment details: We build SMT systems for three distinct experimental candg which we list
below. See Table B.1 for statistics of the data.

We use the training data originally supplied for the WPTOSstidask (Martin et al., 2005) on word
alignment. For the machine translation “dev” set, whichgedifor Maximum BLEU training, we use
the WPTO5 alignment test set, and for the machine translétgat’ set, we use the WPTO03 alignment
test set.

The first system, “Symmetrized GIZA++", is the result of rimm5 iterations of running GIZA++
IBM Model 1, 5 iterations of GIZA++ HMM Model, and 4 iteratigrof GIZA++ Model 4 where one
alignment was generated in the Romanian to English dinectia one alignment was generated in the
English to Romanian direction. The second system, “SymimeetrModel 4, is the result of boot-
strapping our implementation of Model 4 using the GIZA++ HMWbdel outputs, running 4 iterations
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of Model 4 in both directions using our implementation anaikerwise identical to “Symmetrized
GIZA++",

The first system, “Symmetrized GIZA++", is the result of rimm GIZA++ Model 4 and post-
processing the output with heuristics. “Symmetrized Matiek our implementation of Model 4, also
post-processed with the same heuristics. The third sysi&fegk Oracle” is generated by concatenating
the training data together with 1000 copies of the manualhosated gold standard word alignments for
both the machine translation “dev” set and the machine latioe “test” set each time parameters are
estimated for use in our implementation of Model 4. Thesd gtindard alignments are removed before
the alignments are used to build the machine translatiotesysThe effect these gold standard align-
ments have on the machine translation system is indirexy;firce the decisions made in the alignment
of the training data to be good decisions for the transladibtihe development and test sets (which is
why this is an oracle experiment).

Using gold standard word alignments for a fraction of theappak sentences in our augmented train-
ing+dev+test corpus is easy to do in our reimplementatiddadel 4 but not implemented in GIZA++,
which is why we use our implementation to implement the “Wealkcle”. A preliminary comparison
is necessary to show that our alignment package is equivialgrerformance to GIZA++. The BLEU
scores in line 1 (GIZA++) and line 2 (our implementation) afble B.2 show that our implementation
has equivalent performance.

The main comparison directly addresses the existence trbagtgnments. We compare “Sym-
metrized Model 4” (line 2 of Table B.2) with “Weak Oracle”rfk 3 of Table B.2). The “Weak Oracle”
is 3.30 BLEU points better than “Symmetrized Model 4”. THi®ws the existence of alignments which
give us better translation performance than the best we le@inowith our baseline.

Note that this is only a weak oracle experiment because ssiple to find even better alignments.
For instance, if a word is translated as two words in the gtaddard in one context, it will translate
as two words in every context. This will damage the qualitytifer alignments of that word in other
contexts which could affect translation decisions and eshlg affect translation quality. In addition, the
oracle is weak because it is constrained to the alignmeuttsiie which is modeled by the IBM Models
which is not the correct alignment structure (see Secti@¥y). If we were given infinite resources
to search all alignments exhaustively by evaluating thera translation system directly, it would be
possible to find better alignments with even larger BLEU iayements (which would be a strong oracle).

Experiment Results Summary: Table B.2 shows that the current state of the art (line 1) amd o
reimplementation (line 2) have the same performance. Liigetle baseline for the main experiment,
the BLEU score is 23.06. Line 3 shows the existence of aligrism&vhich give us better translation
performance than the best we can currently obtain with oselbge. These improved alignments result
in a BLEU score of 26.36; this is 3.30 points better than theebae which is a large improvement. This
experiment is evidence that MT quality can be improved bylpoing improved word alignments. We
will show how to obtain such improved word alignments (withasing an oracle) in the main part of
the dissertation.
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Table B.1: Romanian/English Weak Oracle Data

ROMANIAN  ENGLISH

SENTENCES 48222
TRAINING WORDS 971525 1024321
VOCABULARY 45782 25507
SINGLETONS 19328 8567

TRANSLATION DEV SENTENCES 200
WORDS 4365 4562

TRANSLATION TEST SENTENCES 248
WORDS 5495 5639

Table B.2: Romanian/English Weak Oracle Results

SYSTEM BLEU %
SYMMETRIZED GIZA++ 22.85
SYMMETRIZED MODEL 4 23.06
WEAK ORACLE 26.36
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Appendix C

Search Implementation Details

C.1 Comparing the Current LEAF Search Implementation with
Model 4

Our current implementation of the LEAF search (used in blo¢hD-step and the E-step) is unoptimized.
We compare it with an unoptimized version of Model 4 (our iempentation) and a highly optimized
implementation of Model 4 (GIZA++, Och and Ney (2003)). Wdlwliscuss how the search for the
LEAF Viterbi alignment can be improved (using the same tégples implemented in GIZA++) to be
about 12 times slower than the time required by the GIZA++ Blatl implementation. GIZA++ is
implemented such that only a single processor can be useth d@ur current LEAF and Model 4
search implementations are fully parallelized and can beoruany number of processors; this is what
has enabled us to carry out experimentation without impieing the optimizations.

The number of milliseconds used per sentence pair in theeR-Stpresented in Table C.1. We
calculated this on the French data set which is 2,842,18tesees, 67,366,819 English words (see
Table 3.3 on Page 35 for the full statistics). This data setains sentences of length up to 254 words,
which increases the average search time required, velseisdsta sets where the sentence length cut-off
is significantly shorter.

We have already shown that our implementation of Model 4 alZd\&+ have the same performance
(as measured by BLEU) in Appendix B.2. In our discussion ofd&lat alignment search implementa-
tions we restrict ourselves to the “baseline” search allgorj as described by Brown et al. (1993), which
uses a hillclimbing search from only one starting point tovarge to a local probability maxima; no
restarts are used, see Section 3.4.2.1.

The first line of Table C.1 shows that we spend an average ofn@8econds per sentence pair
(column 3) for our unoptimized Model 4 implementation (wemsthe two directions in columns 1 and 2
to determine this number, and assume that applying the ‘fJrdp“Refined” symmetrization heuristic
to these two alignments to obtain the final alignment takesgdigible amount of time).

We consider Model 4 in the English to French alignment dioectOur unoptimized implementation
of Model 4 uses a representation of the alignment as a vectdrlengthm (the number of French
words) wherey; is the position of the English word which generated the Fnemord at positiory. The
two search operations, “move” and “swap” (described in AqgieA.2.5.2), copy this alignment vector,
and change one position (for “move”; two positions are cleghfpr “swap”), and then score the new
alignment created by calling a function which returns a pholity for the new alignment.

The second line of Table C.1 shows that the Model 4 implentiemtan GIZA++ is much faster,
an average of 18 milliseconds is used per sentence pairhvid¢6 times faster than our unoptimized

91



Table C.1: Average milliseconds per sentence pair in E-Step

SYSTEM ETOF | FTOE | FINAL M-TO-N
UNOPTIMIZED MODEL 4 (UNSUPERVISED 336 493 829
GIZA++ MODEL 4 (UNSUPERVISED 8 10 18
UNOPTIMIZED LEAF (UNSUPERVISED NA NA 10151
UNOPTIMIZED LEAF (SEMI-SUPERVISED NA NA 11810

Model 4 implementation. The reason for this is that GIZA++s h&o optimizations which are not yet
implemented in our implementation of Model 4.

The first optimization is described by Brown et al. (1993) wikcall it the “Incremental Probability
Calculation” optimization. Given an alignmedt from which we obtain the alignmeant by applying a
particular search operation, we can obtgjn’, f|e) by a constant small number of steps. This involves
starting fromp(a, f|e), dividing out just the probabilities of the generative an made to arrive at
which were not made in arriving at, and multiplying in the probabilities of the generativeiauns
made to arrive at’ but not made in arriving at. This is much faster than calculatiag from scratch
by looking up the probabilities of all of the generative ans used to obtain’ (including particularly
those which were the same as those used to arrivg dthe cost of looking up all of the probabilities is
O(1 + m) (wherel is the length of the English sentence ands the length of the French sentence).

In LEAF, such procedures for updating in a constant numbeteys can also be defined. We will
present a very simple example in which we assume we are ailtgLEAF in just the English to French
direction (for ease of exposition). Suppose we have anmlénia in which an English non-head word
at position: is in a three word English cept headed by the English head atopdsitiony. The “move
English non-head word to new head” search operation is useltinge; to be of word type “deleted”,
resulting in a new alignment. The probabilityz of o’ can be quickly determined given the probability
of a. This is done by performing the following calculations:

® z= p(a,f|e)

¢ // divide the probability of the non-head word to head worsbasation
z = z/w_1(y —i|class(e;)

e // divide the probability ok; being type—1 (non-head word)

2= z/g(~1les)
e // multiply the probability ofe; being typed (deleted)
z =2z x%g(0]e;)

e // z is the probability ofa’
returnz

For LEAF, as in the case of Model 4, this allows us to calcullaégprobability ofa’ from a in a small
constant number of steps, rather using’#ih+ m) lookup of the probabilities for all of the actions. We
expect that the speed up from using this optimization witAEEs analogous to the speed up obtained
when using this optimization with Model 4.

The second optimization is from the appendix of the work byr@nd Ney (2003). This optimiza-
tion is called “Fast Hill Climbing”. If we start from an alignenta, we can keep a single matrix for
each search operation, which will cagh@’, f|e)/p(a, f|e) for alignments:)’ reachable by applying the
search operation te. For instance, if we have a search operation with two argasdemd;, a matrix\/
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indexed by the possibleand; values is defined. The probability of an alignmehgenerated by apply-
ing this search operation using argumeinasdj is M|; ; times the probability of the original alignment
a. Initially, all of the cells of this matrix must be calculdtexplicitly by calculating the costs of the
alignments (using the first optimization). However, theexpap of the “Fast Hill Climbing” optimiza-
tion is obtained because updatihfiwhen the starting alignmentis changed does not require revisiting
all of the cells. Only those columns and rows for which thérahanges need to be updated, and this
is a small number of rows and columns. This means that afeemiditrices are initially created, search
simply consists of scanning these matrices for the cell tighbest probability multiplier, updating the
alignment using that search operation, and updating a féheafolumns and rows of the matrices. Och
and Ney report a 10 to 20 times speed up in local search usmggkimization.

This “Fast Hill Climbing” optimization can also be appliedl itEAF. Six of the seven search opera-
tions in LEAF also have two arguments and require matricesmoilar size to those required for Model
4. The seventh operation, “unlink the link between an Ehglisad word and a French head word”
(operation 7 in Table 3.4 on Page 33) has three parametensydof these parameters are restricted to
three values each, so this will be a small matrix which carelpéity updated. The matrices required for
the first six operations arder m, m? or {2 in size, and it is easy to see that the cost to update them will
be similar to the cost to update the matrices used with Mod#&V/d believe search using the “Fast Hill
Climbing” optimization is dominated by the time to calc@dhe initial matrices, where each cell must
be visited. LEAF will require the calculation of six matr&gevhile each Model 4 direction requires the
calculation of two matrices, for a total of four matrices.eféfore we believe that the speed up obtained
by using this optimization with LEAF will be about 1.5 timessk than that obtained for Model 4.

By implementing these two optimizations it is clearly pbésito speed up our implementation of
Model 4 to match the speed of the GIZA++ implementation of Elo#l According to our empirical
measurements comparing our unoptimized Model 4 implentientavith GIZA++ it will be at least a 46
times speed up which is close to the estimate of Och and Ney.

The third line of Table C.1 shows that the unoptimized unstiped LEAF implementation is very
slow. Itis about 12 times slower than the unoptimized Modehglementation. The fourth line of Table
C.1 shows that the unoptimized semi-supervised LEAF implgation is about 14 times slower than
the unoptimized Model 4 implementation.

As we have already discussed the optimizations requirddEai- are very similar to those used with
Model 4. For LEAF, the results use the new search algorithi8eaftion 3.4.2.2, because the baseline
search algorithm is unacceptably slow to converge. Thedspes gained by implementing the two
optimizations discussed in this section apply equally tthlthe baseline search algorithm and the new
search algorithm as the optimizations make the search tipesdaster and the same search operations
are used in both algorithms.

In summary, we expect that the first optimization would resubn analogous speed up for LEAF
search to the speed up obtained for Model 4. The speed up fopigiag the second optimization to
LEAF would be 1/1.5 times the speed up gained for Model 4. Timptimized Model 4 search can be
sped up by at least 46 times. This implies that we can obtdesaat a 30 times speed up for the LEAF
search process by implementing these optimizations. Wetplemplement these optimizations in future
work.

n fact, it is likely that this speed up would be more than aids speed up as long as we continue
to use the Viterbi approximation in training. GIZA++ useg timeighborhood” training approximation
(Al-Onaizan et al., 1999; Och & Ney, 2003) by default (we usedighborhood” training in all of
our experiments using GIZA++). Using the neighborhood apipnation requires incurring additional
computational costs to those incurred in Viterbi trainisge the appendix of the work by Och and Ney
(2003) for the details.
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C.2 LEAF Search and Dynamic Programming

In this section we briefly consider other search algorithep®rted on in the literature which we consider
directly relevant to the search for the LEAF Viterbi alignmeThey share the commonality that they are
all based on dynamic programming.

Germann (2003) produced an impressive speed-up in lodalitibing search for machine trans-
lation by segmenting the starting hypothesis into oveiilagppocal areas (called tiles) which can be
independently searched, and then reintegrating thesalgotutions into a complete solution using dy-
namic programming. Such a decomposition appears to belp@ési the LEAF model (though it might
be more complicated in the semi-supervised case if glolalifes such as the name transliteration sub-
model are used). If such decomposition is possible this evtedd to a much higher performance in
search, particularly when applied in combination with ogareh advances and the optimizations dis-
cussed in the previous section.

We can also consider search algorithms which are quiterdiffédrom the local hillclimbing search
algorithms we currently use. Udupa and Maji (2005) definegleaich algorithm for Model 4 which con-
siders an exponential number of alignments in polynommaéti Eisner and Tromble (2006) presented a
search algorithm for “very large neighborhood” search irthiiae translation which can be used to con-
sider an exponential number of reorderings for translatiggolynomial time. Both of these approaches
use dynamic programming to examine a much larger spacegsfraénts than our current search algo-
rithms can examine. We speculate that it is possible to m@dwramatically improved search algorithm
for finding the LEAF Viterbi alignment by inventing a similapproach based on dynamic programming
which allows the consideration of exponentially many LEAig@ments in polynomial time.
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