Introduction to Language Modeling (Parsing and Machine Translation Reading Group)

Christian Scheible

October 23, 2008

1. Introduction

2. Smoothing Methods

What?

Probability distribution for word sequences: $p(w_1, ..., w_n) = p(w_1^n)$

 \Rightarrow How likely is a sentence to be produced?

Why?

- Machine translation
- Speech recognition
- ...

- Conditional probabilities for words given their N predecessors
- Independence assumption!
- \rightarrow Approximation

Example

 $p(My \text{ dog finds a bone}) \approx p(My) p(dog|my) p(finds|my, dog) p(a|dog, finds) p(bone|finds, a)$

Smoothing: Adjusting maximum likelihood estimates to produce more accurate probabilities

Why Smoothing?

• Probabilities: relative frequencies (from corpus) $p(w_1, ..., w_n) = \frac{f(w_1, ..., w_n)}{f(w_1, ..., w_n)}$

$$(w_1, \dots, w_n) = \frac{N}{N}$$

- But not all combinations of $w_1, ... w_n$ are covered
- $\rightarrow\,$ Data sparseness leads to probability 0 for many words

Example

p(My dog found two bones) p(My dog found three bones) p(My dog found seventy bones) p(My dog found eighty sausages)p(My dog found)

- Laplace Smoothing
- Additive Smoothing
- Good-Turing Estimate
- Katz Backoff
- Interpolation (Jelinek-Mercer)
- Absolute Discounting
- Witten-Bell Smoothing
- Kneser-Ney Smoothing

- Add 1 to the numerator
- Add the size of the vocabulary (V) to the denominator

$$p(w_1, ..., w_n) = \frac{f(w_1, ..., w_n) + 1}{N + |V|}$$

Laplace Smoothing (2)

- Intended for uniform distributions, language data usually produces Zipf distributions
- Overestimates new items, underestimates known items
- Unrealistically alters probabilities of items with high frequencies

MLE	Empirical	Laplace
0	0.000027	0.000137
1	0.448	0.000247
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822
6	5.23	0.000959
7	6.21	0.00109
8	7.21	0.00123
9	8.26	0.00137

Additive Smoothing

- Add λ to the numerator
- Add $\lambda \times |V|$ to the denominator

$$p(w_1, \dots, w_n) = \frac{f(w_1, \dots, w_n) + \lambda}{N + \lambda |V|}$$

- λ needs to be determined
- Same issues as Laplace smoothing

- Idea: Reallocate the probability mass of events that occur *n* + 1 times to the events that occur *n* times
- For each frequency f, produce an adjusted (expected) frequency f^*

$$f^* \approx (f+1) \frac{E(n_{f+1})}{E(n_f)} \approx (f+1) \frac{n_{f+1}}{n_f}$$

$$p_{GT}(w_1,...,w_n) = \frac{f^*(w_1,...,w_n)}{\sum_X f^*(X)}$$

Good-Turing Estimate (2)

Test Set	Laplace	Good-Turing
0.000027	0.000137	0.000027
0.448	0.000274	0.446
1.25	0.000411	1.26
2.24	0.000548	2.24
3.23	0.000685	3.24
4.21	0.000822	4.22
5.23	0.000959	5.19
6.21	0.00109	6.21
7.21	0.00123	7.24
8.26	0.00137	8.25
	0.000027 0.448 1.25 2.24 3.23 4.21 5.23 6.21 7.21	0.000027 0.000137 0.448 0.000274 1.25 0.000411 2.24 0.000548 3.23 0.000685 4.21 0.000822 5.23 0.000959 6.21 0.00109 7.21 0.00123

- What if n_r is 0?
- \rightarrow n_r need to be smoothed
 - No combination with other distributions

Katz Backoff (1)

- Combines probability distributions
- Idea: Higher- and lower-order distributions
- Recursive smoothing up to unigrams

$$p(w_i|w_k,...,w_{i-1}) = \begin{cases} \frac{f(w_k,...,w_n)\delta}{f(w_k,...,w_{n-1})} & \text{if } f(...) > 0\\\\ \alpha \ p(w_i|w_{k+1},...w_{i-1}) & \text{else} \end{cases}$$

 α ensures that the sum of all probabilities equals 1

Example

Seen: *p*(two bones) Unseen: *p*(some bones)

```
Known: p(bones|two)
Unknown: p(bones|some)
```

Known: p(bones)!

The higher-order frequency is related to the lower-order frequency. Important: p(bones|some) < p(bones|two)

Interpolation (Jelinek-Mercer)

- Another method to combine probability distributions
- Weighted average

$$p(w_i|w_k,...,w_{i-1}) = \sum_{j=0}^k \lambda_j p(w_i|w_{k+j},...,w_{i-1})$$

About λ_i

- The sum of all λ_j is 1
- Use held-out data to determine the best set of values

Absolute Discounting (1)

- Subtract a fixed number from all frequencies
- Uniformly assign the sum of these numbers to new events

$$p(w_1,...,w_n) = \begin{cases} \frac{f(w_1,...,w_n) - \delta}{N} & \text{if } f(w_1,...,w_n) - \delta > 0\\ \\ \frac{(A - n_0) \delta}{n_0 N} & \text{else} \end{cases}$$

 n_n : the number of events that occurred n times

How to determine δ ?	
$\delta = \frac{n_1}{n_1 + 2n_2}$	

- Still wrong results for events with frequency 1
- \rightarrow Solution: Different discounts for n_1 , n_2 , n_{3+}

- Instance of Interpolation
- λ_k : Probability of using the higher-order model

$$p_{WB}(w_i|w_k,...,w_{i-1}) = \lambda_k p_{ML}(w_i|w_k,...,w_{i-1}) + (1-\lambda_k) p_{WB}(w_i|w_{k+1},...,w_{i-1})$$

- Thus: $1 \lambda_k$: Probability of using the lower-order model
- Idea: This is related to the number of different words that follow the history w_k, ..., w_{i-1}

$$N_{1+}(w_k, ..., w_{i-1}, \bullet) = No.$$
 of different words that follow $w_k, ..., w_{i-1}$

$$1 - \lambda_k = \frac{N_{1+}(w_k, ..., w_{i-1}, \bullet)}{N_{1+}(w_l, ..., w_{i-1}, \bullet) + \sum_{w_i} f(w_k, ..., w_i)}$$

Kneser-Ney Smoothing

 Extension of Absolute Discounting: New way to build the lower-order distribution

Problem Case

"San Francisco":

- Francisco is common but only occurs after San
- Absolute Discounting will yield high p(Francisco|new word)
- Not intended!

• Unigram probability should not be proportional to its frequency but to the **number of different words it follows**

Idea

Similarities to Absolute Discounting

- Interpolation with lower-order model
- Discounts

$$p_{kn}(w_1|w_k,...,w_{i-1}) = \frac{f(w_k,...,w_i) - D(f)}{\sum_{w_i} f(w_k,...,w_i)} + \gamma(w_k,...,w_{i-1}) p_{kn}(w_i|w_{k+1},...,w_{i-1})$$

Discount function D(f)

• Different discounts for frequencies 1, 2 and 3+

$$D(f) = \begin{cases} 0 & \text{if } n = 0\\ D_1 = 1 - 2Y \frac{n_2}{n_1} & \text{if } n = 1\\ D_2 = 2 - 3Y \frac{n_3}{n_2} & \text{if } n = 2\\ D_{3+} = 3 - 4Y \frac{n_4}{n_3} & \text{if } n \ge 3 \end{cases}$$

Gamma

Ensures that the distribution sums to 1.

$$\frac{\gamma(w_k, ..., w_{i-1}) =}{\frac{D_1 N_1(w_k, ..., w_{i-1}) + D_2 N_2(w_k, ..., w_{i-1}) + D_3 N_3(w_k, ..., w_{i-1})}{\sum_{w_i} f(w_k, ..., w_i)}}$$

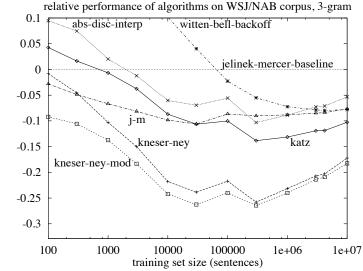
Cross-Entropy Evaluation

- **Cross-entropy (H):** The average number of bits needed to identify an event from a set of possibilities
- In our case: How good is the approximation our smoothing method produces?
- Calculate cross-entropy for each method on test data

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

Evaluation

diff in test cross-entropy from baseline (bits/token)



References

- Stanley F. Chen and Joshua Goodman An empirical study of smoothing techniques for language modeling Proceedings of the 34th annual meeting of the Association for Computational Linguistics, 1996
- 2 Joshua Goodman

The State of the Art in Language Model Smoothing

 $\tt http://research.microsoft.com/^joshuago/lm-tutorial-public.ppt$

3 Bill MacCartney NLP Lunch Tutorial: Smoothing

http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

- 4 Christopher Manning and Hinrich Schütze Foundations of statistical natural language processing MIT Press, 1999
- 5 Helmut Schmid Statistische Methoden in der Maschinellen Sprachverarbeitung

http://www.ims.uni-stuttgart.de/~schmid/ParsingII/current/snlp-folien.pdf