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Language Models

What?

Probability distribution for word sequences:
p(w1, ...,wn) = p(wn

1 )

⇒ How likely is a sentence to be produced?

Why?

• Machine translation

• Speech recognition

• ...
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N-gram Models

• Conditional probabilities for words given their N predecessors

• Independence assumption!

→ Approximation

Example

p(My dog finds a bone) ≈
p(My) p(dog|my) p(finds|my,dog) p(a|dog,finds) p(bone|finds, a)
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Why Smoothing?

Smoothing: Adjusting maximum likelihood estimates to produce more
accurate probabilities
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Why Smoothing?

• Probabilities: relative frequencies (from corpus)

p(w1, ...,wn) =
f (w1, ...,wn)

N
• But not all combinations of w1, ...wn are covered

→ Data sparseness leads to probability 0 for many words

Example

p(My dog found two bones)
p(My dog found three bones)
p(My dog found seventy bones)
p(My dog found eighty sausages)
p(My dog found ... ...)
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Smoothing Models – Overview

• Laplace Smoothing

• Additive Smoothing

• Good-Turing Estimate

• Katz Backoff

• Interpolation (Jelinek-Mercer)

• Absolute Discounting

• Witten-Bell Smoothing

• Kneser-Ney Smoothing
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Laplace Smoothing (1)

• Add 1 to the numerator

• Add the size of the vocabulary (V ) to the denominator

p(w1, ...,wn) =
f (w1, ...,wn) + 1

N + |V |
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Laplace Smoothing (2)

Problems
• Intended for uniform distributions, language data usually produces

Zipf distributions

• Overestimates new items, underestimates known items

• Unrealistically alters probabilities of items with high frequencies

MLE Empirical Laplace
0 0.000027 0.000137
1 0.448 0.000247
2 1.25 0.000411
3 2.24 0.000548
4 3.23 0.000685
5 4.21 0.000822
6 5.23 0.000959
7 6.21 0.00109
8 7.21 0.00123
9 8.26 0.00137
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Additive Smoothing

• Add λ to the numerator

• Add λ× |V | to the denominator

p(w1, ...wn) =
f (w1, ...wn) + λ

N + λ|V |

Problems
• λ needs to be determined

• Same issues as Laplace smoothing
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Good-Turing Estimate (1)

• Idea: Reallocate the probability mass of events that occur n + 1 times
to the events that occur n times

• For each frequency f , produce an adjusted (expected) frequency f ∗

f ∗ ≈ (f + 1)
E (nf +1)

E (nf )
≈ (f + 1)

nf +1

nf

pGT (w1, ...,wn) =
f ∗(w1, ...,wn)∑

X

f ∗(X )
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Good-Turing Estimate (2)

MLE Test Set Laplace Good-Turing
0 0.000027 0.000137 0.000027
1 0.448 0.000274 0.446
2 1.25 0.000411 1.26
3 2.24 0.000548 2.24
4 3.23 0.000685 3.24
5 4.21 0.000822 4.22
6 5.23 0.000959 5.19
7 6.21 0.00109 6.21
8 7.21 0.00123 7.24
9 8.26 0.00137 8.25

Problems
• What if nr is 0?

→ nr need to be smoothed

• No combination with other distributions
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Katz Backoff (1)

• Combines probability distributions

• Idea: Higher- and lower-order distributions

• Recursive smoothing up to unigrams

p(wi |wk , ...,wi−1) =


f (wk , ...,wn)δ

f (wk , ...,wn−1)
if f (...) > 0

α p(wi |wk+1, ...wi−1) else

α ensures that the sum of all probabilities equals 1
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Katz Backoff (2)

Example

Seen: p(two bones)
Unseen: p(some bones)

Known: p(bones|two)
Unknown: p(bones|some)

Known: p(bones)!

The higher-order frequency is related to the lower-order frequency.
Important:
p(bones|some) < p(bones|two)
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Interpolation (Jelinek-Mercer)

• Another method to combine probability distributions

• Weighted average

p(wi |wk , ...,wi−1) =
k∑

j=0

λj p(wi |wk+j , ...,wi−1)

About λj

• The sum of all λj is 1

• Use held-out data to determine the best set of values
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Absolute Discounting (1)

• Subtract a fixed number from all frequencies

• Uniformly assign the sum of these numbers to new events

p(w1, ...,wn) =


f (w1, ...,wn)− δ

N
if f (w1, ...,wn)− δ > 0

(A− n0) δ

n0 N
else

nn: the number of events that occurred n times
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Absolute Discounting (2)

How to determine δ?

δ =
n1

n1 + 2n2

Problems
• Still wrong results for events with frequency 1

→ Solution: Different discounts for n1, n2, n3+
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Witten-Bell Smoothing (1)

• Instance of Interpolation

• λk : Probability of using the higher-order model

pWB(wi |wk , ...,wi−1) =
λk pML(wi |wk , ...,wi−1) + (1− λk) pWB(wi |wk+1, ...,wi−1)
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Witten-Bell Smoothing (2)

• Thus: 1− λk : Probability of using the lower-order model

• Idea: This is related to the number of different words that follow the
history wk , ...,wi−1

N1+(wk , ...,wi−1, •) = No. of different words that follow wk , ...,wi−1

1− λk =
N1+(wk , ...,wi−1, •)

N1+(wl , ...,wi−1, •) +
∑

wi
f (wk , ...wi )
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Kneser-Ney Smoothing

• Extension of Absolute Discounting:
New way to build the lower-order distribution

Problem Case

”San Francisco”:

• Francisco is common but only occurs after San

• Absolute Discounting will yield high p(Francisco|new word)

• Not intended!

• Unigram probability should not be proportional to its frequency but to
the number of different words it follows
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Modified Kneser-Ney Smoothing (1)

Idea

Similarities to Absolute Discounting

• Interpolation with lower-order model

• Discounts

pkn(w1|wk , ...,wi−1) =

f (wk , ...,wi )− D(f )∑
wi

f (wk , ...,wi )
+ γ(wk , ...,wi−1) pkn(wi |wk+1, ...,wi−1)
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Modified Kneser-Ney Smoothing (2)

Discount function D(f)

• Different discounts for frequencies 1, 2 and 3+

D(f ) =


0 if n = 0

D1 = 1− 2Y n2
n1

if n = 1

D2 = 2− 3Y n3
n2

if n = 2

D3+ = 3− 4Y n4
n3

if n ≥ 3
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Modified Kneser-Ney Smoothing (3)

Gamma

Ensures that the distribution sums to 1.

γ(wk , ...,wi−1) =

D1N1(wk , ...,wi−1) + D2N2(wk , ...,wi−1) + D3N3(wk , ...,wi−1)∑
wi

f (wk , ...,wi )
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Evaluation

Cross-Entropy Evaluation

• Cross-entropy (H): The average number of bits needed to identify
an event from a set of possibilities

• In our case: How good is the approximation our smoothing method
produces?

• Calculate cross-entropy for each method on test data

H(p, q) = −
∑
x

p(x)log q(x)
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Evaluation
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