Statistical Machine Translation Part IV – Decoding

Alexander Fraser CIS, LMU München

2014.11.04 WSD and MT

Outline

- Phrase-based translation model
- Decoding
 - Basic phrase-based decoding
 - Dealing with complexity
 - Recombination
 - Pruning
 - Future cost estimation

Phrase-based translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase-based translation model

- Major components of phrase-based model
 - phrase translation model $\phi(\mathbf{f}|\mathbf{e})$
 - reordering model d
 - language model $p_{\text{LM}}(\mathbf{e})$
- Bayes rule

$$\begin{split} \mathsf{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f}) &= \mathsf{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) p(\mathbf{e}) \\ &= \mathsf{argmax}_{\mathbf{e}} \phi(\mathbf{f}|\mathbf{e}) p_{\text{LM}}(\mathbf{e}) \omega^{\mathsf{length}(\mathbf{e})} \end{split}$$

- Sentence **f** is decomposed into I phrases $\bar{f}_1^I = \bar{f}_1, ..., \bar{f}_I$
- Decomposition of $\phi(\mathbf{f}|\mathbf{e})$

$$\phi(\bar{f}_1^I | \bar{e}_1^I) = \prod_{i=1}^I \phi(\bar{f}_i | \bar{e}_i) d(a_i - b_{i-1})$$

Statistical Machine Translation

• Components: Translation model, language model, decoder

Decoding

- Goal: find the best target translation of a source sentence
- Involves search
 - Find maximum probability path in a dynamically generated search graph
- Generate English string, from left to right, by covering parts of Foreign string
 - Generating English string left to right allows scoring with the n-gram language model
- Here is an example of one path

Maria no dio una bofetada	a	la	bruja	verde
---------------------------	---	----	-------	-------

- Build translation left to right
 - select foreign words to be translated

~

- Build translation *left to right*
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation

	Maria	no	dio	una	bofetada	đ	la	bruja	verde
--	-------	----	-----	-----	----------	---	----	-------	-------

Mary

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - mark foreign words as translated

• One to many translation

• Many to one translation

Maria	no	dio una bofetada	a la		bruja	verde
Mary	did not	slap	tl	ne		

• Many to one translation

• Reordering

Maria	no	dio una bofetada	a la	bruja	verde
					`
					$\mathbf{\mathbf{N}}$
Mary	did not	slap	the	green	witch

• Translation *finished*

Translation Options

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not	give	<u>a slap</u> .		to by	<u>the</u>	witch green	green witch
		t_give		to	o			
		-			t.]	he		
			នា	ар		the	witch	

• Look up *possible phrase translations*

- many different ways to *segment* words into phrases
- many different ways to *translate* each phrase

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	 did_not	give	aslap		to	the	 green	 witch
	no	slap		to	the			
		a. give			t.)	0 16		
			ടി	ap		the s	witch	

- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not	give	<u>a slap</u> .		<u>to</u> <u>the</u>		witch green	green witch
	did_no	t give	give		to the			
			ടി	ap		the	witch	

- Pick translation option
- Create hypothesis
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534

• Add another *hypothesis*

• Further hypothesis expansion

- ... until all foreign words covered
 - find best hypothesis that covers all foreign words
 - *backtrack* to read off translation

- Adding more hypothesis
- \Rightarrow *Explosion* of search space

Explosion of Search Space

- Number of hypotheses is *exponential* with respect to sentence length
- \Rightarrow Decoding is NP-complete [Knight, 1999]
- \Rightarrow Need to *reduce search space*
 - risk free: hypothesis recombination
 - risky: histogram/threshold pruning

Hypothesis Recombination

• Different paths to the *same* partial translation

Hypothesis Recombination

- Different paths to the same partial translation
- \Rightarrow Combine paths
 - drop weaker path
 - keep pointer from weaker path (for lattice generation)

- Recombined hypotheses do *not* have to *match completely*
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - *foreign word coverage* vectors match (possible future paths are the same)

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (possible future paths are the same)
- \Rightarrow Combine paths

Pruning

- Hypothesis recombination is *not sufficient*
- ⇒ Heuristically *discard* weak hypotheses early
 - Organize Hypothesis in stacks, e.g. by
 - same foreign words covered
 - same number of foreign words covered
 - same number of English words produced
 - Compare hypotheses in stacks, discard bad ones
 - **histogram pruning**: keep top n hypotheses in each stack (e.g., n=100)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)

- Organization of hypothesis into stacks
 - here: based on *number of foreign words* translated
 - during translation all hypotheses from one stack are expanded
 - expanded Hypotheses are placed into stacks

Comparing Hypotheses

Comparing hypotheses with same number of foreign words covered

- Hypothesis that covers *easy part* of sentence is preferred
- \Rightarrow Need to consider **future cost** of uncovered parts

Future Cost Estimation

- Estimate cost to translate remaining part of input
- Step 1: estimate future cost for each *translation option*
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 - \rightarrow LM * TM = p(to) * p(the|to) * p(to the|a la)

Future Cost Estimation: Step 2

• Step 2: find *cheapest cost* among translation options

Slide from Koehn 2008

Future Cost Estimation: Step 3

- Step 3: find *cheapest future cost path* for each span
 - can be done *efficiently* by dynamic programming
 - future cost for every span can be pre-computed

Future Cost Estimation: Application

- Use future cost estimates when *pruning* hypotheses
- For each *uncovered contiguous span*:
 - look up *future costs* for each maximal contiguous uncovered span
 - add to actually accumulated cost for translation option for pruning

A* search

- Pruning might drop hypothesis that lead to the best path (search error)
- A* search: safe pruning
 - future cost estimates have to be accurate or underestimates
 - lower bound for probability is established early by depth first search: compute cost for one complete translation
 - if cost-so-far and future cost are worse than *lower bound*, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough

Limits on Reordering

- Reordering may be **limited**
 - Monotone Translation: No reordering at all
 - Only phrase movements of at most n words
- Reordering limits *speed* up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality

Word Lattice Generation

- Search graph can be easily converted into a word lattice
 - can be further mined for n-best lists
 - \rightarrow enables **reranking** approaches
 - \rightarrow enables discriminative training

