Statistical Machine Translation
Part V — Log-Linear Models

Alexander Fraser
CIS, LMU Munchen

2014.11.11 WSD and MT

Where we have been

e \WWe have covered all bases!

* Solving a problem where we are predicting a
structured output:

— Problem definition

— Evaluation, i.e., how will we evaluate progress?
— Model

— Training = parameter estimation

— Search (= decoding, for SMT)

Where we are going

* The generative models we have seen so far
are good, but we can do better

— Switch to discriminative models (this will be
defined later)

— We will see that this frees us from the structure of
the generative model!
* We can concentrate on new knowledge sources

* Also, no more annoying open parameters

— The kind of model | will present is used practically
everywhere in NLP these days

Outline

Recap: original phrase-based model, search
Optimizing parameters

Deriving the log-linear model

Tuning the log-linear model

Adding new features

Phrase-based translation

zur Konferensz

| nach Kanada

Tommrrowl I |will flvy

| to the cmnferencellin Canada

e Foreign input is segmented in phrases
— any sequence of words, not necessarily linguistically motivated

e Each phrase is translated into English

e Phrases are reordered

Slide from Koehn 2008

Phrase-based translation model

e Major components of phrase-based model
— phrase translation model ¢(f|e)
— reordering model d
— language model p,\(e)
e Bayes rule f ; ;
argmax.p(elf) = argmaxp(f|e)p(e)

= argmaxe.:;r{ﬂe}j:hm{ejwle”gh(ej

Sentence f is decomposed into I phrases f{ = fi,.... f

e Decomposition of o(f|e)

of f_? le;)d(a; — bi—1)
1

o F T
o(filer) =

T

I

Modified from Koehn 2008

Hypothesis Expansion

Maria hilsl dio una bofetada a 1la bruija vards
Matys not giwe a 2lap Lo tha —witch grsen
Aid not a slap Ly dresn witch
no slap Lo the
Aid not giwe to
Lthe
2lap Lha witch
[=H : Mary
£: --------- |—{»EERSEEE T
P: 1 i 534

e Pick translation option

e Create hypothesis

— e: add English phrase Mary
— f: first foreign word covered
— p: probability 0.534

Slide from Koehn 2008

Hypothesis Expansion

Maria o dio una bofetada a 1la bruja vards
Moty not giwe = slap Lo tha witch gJrsen
~did not 2 slap Loy dgresn witch
o slap to the
Aid not gisre iw]
the
alap the witch
e: witch
f: —----m-wo
P: .182
= 2: Mary
£ --------- R
P: 1 P: .534

e Add another hypothesis

Slide from Koehn 2008

Hypothesis Expansion

o dio una bofetada a 1la bruija vards

Maty not giwe a slap Lo tha —wWitch famal=T=\ul
~Aid not 2 =slap Ly gresn witch
oo 3lap to the
did not give Lo
the
alap the witch

e: witch & . s8lap

fi ——--c--w- o w_www____

: 182 p: .043

e Further hypothesis expansion

Slide from Koehn 2008

Hypothesis Expansion

Maria no dic una bofetada a la bruja wverdsa
Moty not gizre J=! slap o tha —witch gresn
Aid not A _slap Lar green witch
no 2lap to tha
did not _gisre oy
Lha
2lap tha witch

e: slap
f: *_kk k-

: 043

ax : did not a: 8lap a: tha e:graen witch
o T PR - M T R L LY I J—— Fr khkkdhd__ F: #*#kkdkbhds
p: 1 : .154 p: .015 p: .004283 p: 000271

e ... until all foreign words covered

— find best hypothesis that covers all foreign words
— backtrack to read off translation

Slide from Koehn 2008

Outline

Recap

Optimizing parameters
Deriving the log-linear model
Tuning the log-linear model
Adding new features

Introduction

 We have seen that using Bayes’ Rule we can
decompose the problem of maximizing P(e|f)

argmax P(e | f) = argmax P(f|e) P(e)
e e

Basic phrase-based model

* We make the Viterbi assumption for alignment (not
summing over alignments, just taking the best one)

 We know how to implement P(f,a|e) using a phrase-
based translation model composed of a phrase-
generation model and a reordering model

 We know how to implement P(e) using a trigram
model and a length bonus

PTM (f1 a | e) PD (a) PLI\/I (e) Clength(e)

Example

Source: |Morgen| |fliege| |ich| |nach Kanada|
Hyp 1: |Tomorrow| |I| |will fly| |to Canada|
Hyp 2: |Tomorrow| |fly| |I]| |to Canada]

* What do we expect the numbers to look like?

Hyp 1 Good M <1 Good

Hyp 2 Good 770 =1 Bad CA5 < C16

What determines which hyp is

better?

 Which hyp gets picked?
— Length bonus and trigram like hyp 1
— Reordering likes hyp 2

* If we optimize Z and C for best performance, we will
pick hyp 1

Hyp 1 Good NM<1 Good

Hyp 2 Good /M0=1 Bad CNA5<CM6

How to optimize Z and C?

* Take a new corpus “dev” (1000 sentences, with gold
standard references so we can score BLEU)

* Try out different parameters. [Take last C and Z
printed]. How many runs?

Best = 0;
For (2 = 0; Z <= 1.0; Z += 0.1)
For (C = 1.0; C <= 3.0; C += 0.1)
Hyp = run decoder (C,Z,dev)
If (BLEU (Hyp) > Best)
Best = BLEU (Hyp)
Print C and 7Z

Adding weights

 But what if we know that the language model
is really good; or really bad?

* We can take the probability output by this
model to an exponent

Py (€)™
* |f we set the exponent to a very large positive

number then we trust P, (e) very much

— If we set the exponent to zero, we do not trust it
at all (probability is always 1, no matter what e is)

* Add a weight for each component

(Note, omitting length bonus here, it will be back
soon; we’ll set Cto 1 for now so it is gone)

Pra(f,al€)™ Po(@)’* Py (e)

* To get a conditional probability, we will divide
by all possible strings e and all possible
alignments a

Pry (f.a]e)™ Py (a)™ Py, (€)™

P(e,a|f) = 2 | |
>, Pru (Fa] €)™ P (@) Py (€)™

* To solve the decoding problem we maximize
over e and a. But the term in the denominator
is constant!

A Ap M
argmax P (e,a | f) =argmax Pru (.2 ?) . APD (3) | F:LM (&) _
Ze',a‘ PTM (f’a | €) h PD (a) 0 PLM (e) -

= argmax e,a I:)TM (f’ d | e) e I:)D (a) o I:)LM (e) e

* Now let's add C back in and take the log (see
formulation in a couple of slides)

* We now have two problems

— Optimize Z and C and the three lambdas

— Exponentiation is slow
 Let’s solve this one first...

Log probabilities

Convenient to work in log space

Use log base 10 because it is easy for humans
0g(1)=0 because 10°=1

0g(1/10)=-1 because 107 =1/10
0g(1/100)=-2 because 107°=1/100

Log(a*b) = log(a)+log(b)

Log(a”b) = b log(a)

So let’s maximize the log

argmax , ,P(e,a | f)

=argmax , Pry (f.ale) e Po (@) o Piwm (€) “ow Clenon®

€,a

So let’s maximize the log

argmax , ,P(e,a | f)

=argmax , Pry (f.ale) e Po (@) o Piwm (€) “ow Clenon®

€,a

—argmax.,, 10g(Pry (f,a] €)™ P, (8)"* Pyyy (€)' C*")

So let’s maximize the log

argmax , ,P(e,a | f)

=argmax , Pry (f.ale) e Po (@) o Piwm (€) “ow Clenon®

€,a

—argmax,,, 10g(Pr, (f,a] &)™ P(8)° Py, ()" C2")

=argmax ., log(P;,, (f,a| €)™)+ log(P, (a)*)
+log(P,,, (€)"*) + log(C*""®))

So let’s maximize the log

argmax , ,P(e,a | f)
= argmax

€,a

=argmax . , log(Py, (f,a

= argmax ,, log(Pr, (f,a

P (,21€)™ Py (@) Py (€)' C7"

)™ P ()" Py (e) C™o")

€)™) +log(P; (8))

+log(Py, (6)) + logl "))

= argmax , , 4ny 109(Pry, (f,2]€)) + 45100(P;, (8))
+ A.mlog(Py (€)) + log(Cnney)

Let’s change the length bonus

= argmax , , 1, 10g(Py,, (f,a| €)) + 4, log(P, (2))
+ A 109(Py (€)) + 4, 5log(109)

=argmax . , /Lrl\/l Iog(PTM (f’ d | e)) + }LDIOQ(PD (a))
+ 7 10g(Py, (€)) + . length(e)

We set C=10 and add a new lambda, then simplify

Length penalty

= argmax ,,, Ay, log(Py,, (f,a|€)) + 1o l0g(P, (2))
+ 7 l0g(Py () + 4, (-length(e))

We like the values we work with to be zero or less
(like log probabilities)

We change from a length bonus to a length
penalty (LP)

But we know we want to encourage longer strings
so we expect that this lambda will be negative!

Reordering

= argmax,, i, log(Pr, (.| €)) + 4, (-D(@))
+ 7 10g(Py (€)) + 4, (-length(e))

Do the same thing for reordering. As we do more
jumps, “probability” should go down.

So use —D(a)

D(a) is the sum of the jump distances (4 for hyp 1
IN our previous example)

Log-linear model|

* So we now have a log-linear model with four
components, and four lambda weights
— The components are called feature functions

* Given f, e and/or a they generate a log probability value

e Or avalue looking like a log probability (Reordering,
Length Penalty)

— Other names: features, sub-models

e This is a discriminative model, not a
generative model

The birth of SMT: generative models

e The definition of translation probability follows a mathematical derivation
argmax,p(elf) = argmax,p(fle) p(e)

e Occasionally, some independence assumptions are thrown in
for instance IBM Model 1: word translations are independent of each other

1 :
plelf.a) = — [[peil fui)

e Generative story leads to straight-forward estimation

— maximum likelihood estimation of component probability distribution
— EM algorithm for discovering hidden variables (alignment)

Slide from Koehn 2008

Discriminative vs. generative models

e Generative models

— translation process is broken down to steps
— each step is modeled by a probability distribution
— each probability distribution is estimated from the data by maximum

likelihood

e Discriminative models

— model consist of a number of features (e.g. the language model score)
— each feature has a weight, measuring its value for judging a translation as

correct
— feature weights are optimized on development data, so that the system
output matches correct translations as close as possible

Slide from Koehn 2008

Search for the log-linear model

 We've derived the log-linear model

— We can use our beam decoder to search for the
English string (and alignment) of maximum
probability

* We only change it to sum (lambdas times log
probabilities)

e Rather than multiplying unweighted probabilities as it
did before

=argmax . Ar, 10g(Pry (T |€)) + 45 (-D(@))
+ A 109(Py (8)) + 4, (-length(e))

Discriminative training problem:
optimizing lambda

We are looking for the best lambda vector
— A lambda vector consists of lambda scalars (4 for our model right now)

How do we get an optimal lambda vector?

We can use nested for-loops as we did before for Cand Z

— We need to try out a lot of values for the lambda scalars though, the
differences could be very subtle

— Many, many decoder runs; these take 10 minutes or longer each!

At least we can reduce number of decoder runs
— Use n-best lists

Discriminative training

e Training set (development set)

— different from original training set
— small (maybe 1000 sentences)
— must be different from test set

e Current model translates this development set

— n-best list of translations (n=100, 10000)
— translations in n-best list can be scored

e Feature weights are adjusted

e N-Best list generation and feature weight adjustment repeated for a number
of iterations

Slide from Koehn 2008

Learn feature weights

generate
n-best list

il

score translations

Slide from Koehn 2008

Model |
change

feature weights

*ummw///)’

|

find
feature weights
that move up
good translations

I
N\

Learning Task

Source: |Morgen| |fliege| |ich| |nach Kanada]
Hyp 1: |Tomorrow| |I| |will fly| |to Canada|
Hyp 2: |Tomorrow| |fly| |I| |to Canada]

Assume that Hyp 1 has a better BLEU score

Hyp 1

Hyp 2 -1 0 -5 -5

Learning Task

Suppose we start with an initial lambda vector: 111 -1
Then: hyp 1 has a log score of -2 (1/100 probability)
hyp 2 has a log score of -1 (1/10 probability)

This is poor! Hyp 2 will be selected

Hyp 1

Hyp 2 -1 0 -5 -5

Learning Task

We would like to find a vector like: 1 0.5 2 -1
hyp 1 has a log score of -3
hyp 2 has a log score of -6

Hyp 1 is correctly selected!

Hyp 1

Hyp 2 -1 0 -5 -5

Learning Task

N-best lists contain several sentences and hypotheses for each sentence

The lambda vector 1 0.5 2 -1 picks Hyp 1 in the first sentence, and Hyp 2
in the second sentence.

Suppose sentence 2 Hyp 1 is better. Then choose a lambda like: 3 0.5 2 -1

It is easy to see that this does not change the ranking of the hypotheses
in sentence 1.

Hypothesis | Phrase Reordering | Trigram LM | Length
Trans bonus

1 Hyp 1 -4 -3

1 Hyp 2 -1 0 -5 -5
2 Hyp 1 -2 0 -3 -3
2 Hyp 2 -3 0 -2 -3

N-best lists result in big savings

* Run the for-loops on a small collection of
nypotheses, do decoder runs only when you
nave good settings

Initialize: start with empty hypothesis collection
LOOP:

— Run the decoder with current lambda vector and add n-
best list hypotheses to our collection

— Score collection of hypotheses with BLEU

— Use nested-for-loop to change individual lambda
scalars 1n vector to get better BLEU on collection

— End program if lambda vector did not change

* OK, so we know how to set the lambda vector
for our four feature functions

— This means depending on the task we might, for
instance, penalize reordering more or less

— This is determined automatically by the
performance on the dev corpus

e But what about new features?

New Feature Functions

e We can add new feature functions!

— Simply add a new term and an associated lambda

* Can be anything that can be scored on a partial hypothesis
— (remember how the decoder works!)
— Can be function of e, f and/or a
— Can be either log probability (e.g., Trigram), or just look like one (e.g.,
Length Penalty)
 These can be very complex features to very simple features
— Length penalty is simple
— Phrase translation is complex
— With right lambda settings they will trade-off against each other well!

New Feature Functions

e Features can overlap with one another!

— In a generative model we do a sequence of steps, no
overlapping allowed

— In Model 1, you can’t pick a generated word using two
probability distributions

* Note: Interpolation is not an answer here, would add the
optimization of the interpolation weight into EM

» Better to rework generative story if you must (this is difficult)

— With a log-linear model we can score the probability of a
phrase block using many different feature functions,
because the model is not generative

Knowledge sources

e Many different knowledge sources useful

— language model

— reordering (distortion) model
— phrase translation model

— word translation model

— word count

— phrase count

— drop word feature

— phrase pair frequency

— additional language models
— additional features

Slide from Koehn 2008

Revisiting discriminative training:
methods to adjust feature weights

We will wind up with a lot of lambda scalars to
optimize

But there are algorithms to deal with this that are
more efficient than nested for-loops

In all cases, we have the same log-linear model

— The only difference is in how to optimize the lambdas
— We saw one way to do this already

* Using nested for-loops on n-best lists

— We will keep using n-best lists (but not nested for-loops)

Minimum Error Rate Training

— Maximize quality of top-ranked translation
 Similarity according to metric (BLEU)
* Implemented in Moses toolkit

Och’s minimum error rate training (MERT)

e Line search for best feature weights

given: sentences with n-best list of

translations

iterate n times
randomize starting feature weights

iterate until convergences

for each feature
find best feature weight
update if different from current

return best feature weights found in any

iteration

Slide from Koehn 2008

MERT is like “un-nesting” the for-loops

StartLambda = 1 1 1 -1
LOOP:
BestBLEU[1..4] = 0
For (1 = 1 to 4)
TryLambda = StartLambda
For (L = 1.0; L <= 3.0; L += 0.1)
TryLambda[i] = L
Hyp = best hyps from nbest list (TryLambda)
If (BLEU(Hyp) > BestBLEU[i])
BestBLEU[i] = BLEU (Hyp)
BestLambda[i] = L

Then simply check BestBLEU[1..4] for the best score.
Suppose it is BestBLEU[2].

Set StartLambda[2] = BestLambda[2] and go to top of loop (until
you get no improvement).

However MERT is better than that

We will not check discrete values (1.0, 1.1, ..., 3.0)

We will instead do an exact line minimization in one
pass through the n-best list

Key observation is that varying just one weight
means:

— The score of each hypothesis (as we vary the weight) can
be viewed as a line

— For each sentence, we can look at the intercept points of
these lines to see where the hypothesis with the best
model score changes

Find Best Feature Weight

e Core task:
— find optimal value for one parameter weight A
— ... while leaving all other weights constant

e Score of translation i for a sentence f:
]J(E‘z‘f) = Aa; + b,

e Recall that:

— we deal with 100s of translations e; per sentence f

— we deal with 100s or 1000s of sentences f
— we are trying to find the value A so that over all sentences, the error score

is optimized

Slide from Koehn 2008

Translations for one Sentence

argmax p(x)

e cach translation is a line p(e;|f) = Aa; + b,
e the model-best translation for a given \ (x-axis), is highest line at that point
e there are one a few threshold points t; where the model-best line changes

Slide from Koehn 2008

Finding the Optimal Value for \

Real-valued A\ can have infinite number of values

But only on threshold points, one of the model-best translation changes

Algorithm:

— find the threshold points

— for each interval between threshold points
« find best translations

% compute error-score
— pick interval with best error-score

Slide from Koehn 2008

Minimum Error Rate Training
[Och, ACL 2003]

* Maximize quality of top-ranked translation
 Similarity according to metric (BLEU)
* This approach only works with up to around 20

feature functions
e But very fast and easy to implement

* Implementation comes with Moses

Maximum Entropy
[Och and Ney, ACL 2002]

— Match expectation of feature values of model and
reference translation

— Log-linear models are also sometimes called
Maximum Entropy models (when trained this way)

— Great for binary classification, very many
lightweight features

* Also is a convex optimization — no problems with local
maxima in the optimization

— Doesn‘t work well for SMT

Ordinal Regression
[Chiang et al., NAACL 2009;
many others previously]

Separate k worst from the k best translations

* E.g., separate hypotheses with lowest BLEU from hypotheses with highest
BLEU

* Approximately maximizes the margin

* Support Vector machines do this non-approximately (but are too slow)

* Often done in an online fashion, one sentence at a time (i.e., original
Chiang approach)

Recently become very popular

Moses comes with Batch MIRA (not online), we use this

Related approach (also in Moses) is Pairwise Ranking Optimization
Both approaches scale to thousands of feature functions

Conclusion

We have defined log-linear models
And shown how to automatically tune them

Log-linear models allow us to use any feature
function that our decoder can score

— Must be able to score a partial hypothesis
extended from left to right (decoding/search
lecture)

Log-linear models are now used almost
everywhere (also in non-structured
prediction)

* Thanks for your attention!

BLEU error surface

e Varying one parameter: a rugged line with many local optima

0.495

"BLEU”

0.434 ~

0433 -

1 1 1
-0.01 -0.005 0 0.003 0.01

Slide from Koehn 2008

