Basic Machine Learning: Linear Models

Alexander Fraser
CIS, LMU Munchen

2015.12.08 WSD and MT

Basic Machine Learning
(Classification)

* |'m going to start by presenting a very brief
review of decision trees

— I'll also briefly discuss overfitting
 Then I'll talk about linear models, which are

the workhorse of discriminative classification
most used in NLP

* The example | am repeatedly using here is the
CMU seminars task, a standard IE task

— | will explain this task in a few slides

Decision Tree Representation for ‘Play Tennise'’

Sunny

Humidity

/\

High Normal

/ \

No Yes

Outlook

Overcast

Yes

Strong

Rain

™~

Wind

/\

/

No

Weak

» Internal node

~ test an attribute
» Branch

~ attribute value
> Leaf

~ classification
result

Slide from A. Kaban

When is It useful?¢

AMedical diagnosis
QEguipment diagnosis
dCredit risk analysis
defc

Slide from A. Kaban

Rule Sets as Decision Trees

» Decision trees are quite powerful

* |TIs easy to see that complex rules can
be encoded as decision trees

e For instance, let's look at border
detection in CMU seminars...

Example

the seminar at <time> 4 pm will

Condition] Additional Knowledge

Action

Word |Lemma|LexCat|case SemCat

Tag

at

stime

Digit

timeid

Fabio Ciravegna:

/34 Adaptive Information Bxtraction from Text by Rule Induction and Gereralisation

in Procesdings of 17th Internatiormal Joint Conference on Artificial Intelligence (IJCAI 2001, Seattle, August 2001,

\\ednesday, 26 August 2009

A Path in the Decision Tree

The tree will check if the foken to the left
of the possible start position has "at" as o
lemma

Then check if the token after the possible
start position is a Digit

Then check the second token after the
start position is a timeid ("am”, "om", etc)

If you follow this path at a partficular
location In the text, then the decision
should be to insert a <stime>

Linear Models

However, In practice decision trees are
not used so offen in NLP

Instead, linear models are used
Let me first present linear models

Then | will compare linear models and
decision trees

Binary Classification

I'm going to first discuss linear models for
binary classification, using binary features

We'll take the same scenario as before

Our classifier is frying to decide whether
we have a <stime> tag or not at the
current position (between two words in
an email)

The first thing we will do is encode the
context at this position info a feature
vector

Feature Vector

« Each feature is true or false, and has a
position In the feature vector

* The feature vector is typically sparse,
meaning it is mostly zeros (i.e., false)

» The feature vector represents the full
feature space. For instance, consider...

Example

the seminar at <time> 4 pm will

Additional Knowledge
Lemma | LexCat |case|SemCat
seminar |Seminar
at
4

pm
will

Word

stime

Fabio Ciravegna:
/34 Adaptive Information Extraction from Text by Rule Induction and Generalisation
in Proceedings of 17th Internatiomal Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, August 2001.
Wednesday, 26 August 2009

@ Example

the seminar at <time> 4 pm will

[Condition| Additional Knowledge | Action
Word |Lemma|LexCat|case|SemCat Tag_
the the Art |low
seminar |Seminar| Noun |low
at at Prep |low stime
-+ 4 Digit |low
pm pm | Other |low| timeid
will will | Verb |[low

Our features represent this table using binary variables
For instance, consider the lemma column
Most features will be false (false = off = 0)

The lemma features that will be on (true = on = 1) are:
-3 lemma_the
-2_lemma_Seminar
-1 _lemma_at
+1 _lemma_4
+2_lemma_pm
+3 lemma_will
12

Classification

« To classity we will take the dot product of
the feature vector with a learned weight
vector

 We will say that the class is true (i.e., we
should insert a <stime> here) if the dof
product is > 0, and false otherwise

« Because we might want to shift the
decision boundary, we add a feature
that is always true
 This is called the bias

* By weighting the bias, we can shift where we
make the decision (see next slide)

Feature Vector

« We might use a feature vector like this:
(this example is simplified — really we'd have all features for all positions)

Bias term
... (say, -3_lemma_giraffe)
-3_lemma_the

-2 lemma_Seminar
-1 lemma_at
+1 lemma 4

+1_Digit
+2 timeid

Weight Vector

Now we'd like the dot product to be > 0 if we
should insert a <stime> tag

To encode the rule we looked at before we
have three features that we want 1o have @
positive weight

e -1 lemma_at

« +]_Digit

e +2 timeid

We can give them weights of 1

Their sum will be three

To make sure that we only classify if all three
Weig?’rs %re on, let's set the weight on the bias
term to -

Dot Product - |

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2 timeid

— — 00—~ 000000,

To compute
the dot
product first
take the
product of
each row, and
then sum these

Dot Product - I

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2 timeid

— — 00—~ 000000,

1*-2
0*0
0*0
0*0
1*0
0*0
0*0
1%]
1*0
0*0
1%]
1%]

Learning the Weight Vector

The general learning task is simply to find @
good weight vector!

« This is sometimes also called "training”

Basic intuition: you can check weight vector
candidates to see how well they classity the
training data

« Better weights vectors get more of the fraining
data right

So we need some way to make (smart)
changes to the weight vector

- The goal is to make befter decisions on the
training data

| will talk more about this later

Feature Extraction

 We run feature exiraction to get the feature
vectors for each position in the text

 We typically use a text representation to
represent true values (which are sparse)

« Often we define feature templates which
describe the feature to be extracted and give
the name of the feature (i.e., -1_lemma_ XXX)

-3_lemma_the -2_lemma_Seminar -1_lemma_at +1_lemma_4 +1_Digit +2_timeid STIME

-3_lemma_Seminar -2_lemma_at -1_lemma_4 -1_Digit +1_timeid +2_lemma_ will NONE

Training vs. Testing

 When training the system, we have gold
standard labels (see previous slide)

 When testing the system on new datq,
we have no gold standard
 We run the same feature extraction first
 Then we take the dot product with the
weight vector to get a classification decision

» Finally, we have to go back to the
original text fo write the <stime> tags info

the correct positions

Summary so far

So we've seen training and testing

We have an idea about frain error and
test error (key concepts!)

We are aware of the problem of
overfitting

« And we know what overfitting means in terms
of train error and test error!

Now let's compare decision trees and
inear models

Linear models are weaker

Linear models are weaker than decision
frees

* This means they can't express the same
richness of decisions as decision trees can (if
both have access to the same features)

It is easy to see this by extending our
example

Recall that we have a weight vector
encoding our rule (see next slide)

Let's take another reasonable rule

Example

the seminar at <time> 4 pm will

Condition] Additional Knowledge

Action

Word |Lemma|LexCat|case SemCat

Tag

at

stime

Digit

timeid

Fabio Ciravegna:

/34 Adaptive Information Bxtraction from Text by Rule Induction and Gereralisation

in Procesdings of 17th Internatiormal Joint Conference on Artificial Intelligence (IJCAI 2001, Seattle, August 2001,

\\ednesday, 26 August 2009

Example

the seminar at <time> 4 pm will

Additional Knowledge
Lemma | LexCat |case|SemCat
seminar |Seminar
at
4

pm
will

Word

stime

Fabio Ciravegna:
/34 Adaptive Information Extraction from Text by Rule Induction and Generalisation
in Proceedings of 17th Internatiomal Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, August 2001.
Wednesday, 26 August 2009

 The rule we'd like to learn is that if we
have the features:

-2_lemma_Seminar
-1 _lemma_at
+1_Digit
« We should insert a <stime>

« This Is quite a reasonable rule, it letfs us
correctly cover the new sentence:

"The Seminar at 3 will be given by ..."
(there is no fimeid like "pm" herel)
» Letf's modify the weight vector

Adding the second rule

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2 timeid

— — 00 —~0 0 —00 0O\,

26

» Let's first verity that both rules work with
this weight vector

» But does anyone see any issues heree

How many rulese

 If we look back at the vector, we see that we
have actually encoded quite a number of
rules

« Any combination of three features with ones will
be sufficient so that we have a <stime>

 This might be good (i.e., it might generalize well
to other examples). Or it might nof.

« But what is definitely frue is that it would be
easy to create a decision tree that only
encodes exactly our two rules!

« This should give you an infuition as to how
linear models are weaker than decision trees

How can we get this power In

inear mdelse

Change the features!

For instance, we can create combinations of
our old features as new features

For instance, clearly if we have:

« One feature to encode our first rule

 Another feature to encode our second rule

« And we set the bias 1o 0

We get the same as the decision tree

Sometimes these new compound features
would be referred to as trigrams (they each
combine three basic features)

Feature Selection

* A task which includes automatically
finding such new compound features
Is called feature selection

* This is built into some machine learning
toolkits

« Or you can implement it yourself by trying
out feature combinations and checking
the training error

 Use human intuition to check a small number
of combinations

« Or do it automatically, using a script

Trainin

Training

is automatically adjusting the feature vector so as to

better fit the training corpus! Intuition: make small adjustments to
get a better score on the fraining data (these all fit our examplel)

N

— — OO0 - 00 —00O0

-2.01
0.04
0.0004

1.1

-1.99
0.04
0.002
0
1.101
0

0
0.2111
0

0
0.892

0.9

-2.01
0.043
0.0003

1.1

Two classes

So far we discussed how to deal with a single label

« At each position between two words we are asking
whether there is a <stime> tag

However, we are interested in <stime> and </stime> tags
How can we deal with this?

We can simply train one classifier on the <stime>
prediction task

« Here we are treating </stime> positions like every other non
<stime> position
And train another classifier on the </stime> prediction
task

« Likewise, treating <stime> positions like every other non
</stime> position
If both classifiers predict "tfrue" for a single position, take
the one that has the highest dot product

More than two labels

What we have had up until now is called
binary classification

But we can generalize this idea to many
possible labels

This is called multiclass classification

 We are picking one label (class) from a set of
classes

For instfance, maybe we are also interested in
the <etime> and </etime> labels
 These labels indicate seminar end times, which

are also offen in the announcement emails (see
next slide)

CMU Seminars - Example

<0.24.4.93.20.59.10.]gc+@NL.CS.CMU.EDU (Jaime Carbonell).0>
Type: cmu.cs.proj.mt

Topic: <speaker>Nagao</speaker> Talk

Dates: 26-Apr-93

Time: <stime>10:00</stime> - <etime>11.00 AM</etime>

PostedBy: jgc+ on 24-Apr-93 at 20:59 from NL.CS.CMU.EDU (Jaime
Carbonell)

Abstract:

<paragraph><sentence>This Monday, 4/26, <speaker>Prof. Makoto
Nagao</speaker> will give a seminar in the <location>CMT red
conference room</location> <stime>10</stime>-<efime>11am</etime>
on recent MT research results</sentence>.</paragraph>

One against all

We can generadlize the way we handled two
binary classification decisions to many labels

Let's add the <efime> and </etime> labels

We can train a classifier for each tag

« Just as before, every position that is not an <etime> is
a negative example for the <etime> classifier, and
likewise for </etime>

It multiple classifiers say "true”, take the classifier
with the highest dot product

This is called one-against-all

It is a quite reasonable way to use binary
classification to predict one of multiple classes

* |t is not the only option, but it is easy to understand
(and to implement too!)

Optional: "notag” classifier

Actually, not inserting a tag is also a decision

When working with multiple classifiers, we could train a
classifier for "no tag here" too

This is trained using all positions that do not have a tag as
positive examples
« And all positions that have tags as negative examples
And again, we take the highest activation as the winning class
« What happens if all of the classifications are negative?
« We still take the highest activation!

This is usually not done in domains with a heavy imbalance of
"'notag” like decisions, but it is an interesting possibility

Question: what would happen to the weight vector if we did
this in the binary classification (<stime> or no <stime>) case?

Summary: Multficlass classification

« We discussed one-against-all, o
framework for combining binary classifiers

|t is not the only way to do this, but it
often works pretty well

* There are also technigues involving building
classifiers on different subsets of the data and
voting for classes

* And other fechnigues can involve, e.g., a
sequence of classification decisions (for
Instance, a tree-like structure of
classifications)

Binary classifiers and sequences

* AS we saw a few lectures ago, we can
detect seminar start times by using two
binary classifiers:

* One for <stime>
* One for </stime>

 And recall that if they both say "frue” to
the same position, take the highest dof
product

 Then we need to actually annotate
the document

« But this is problematic...

Some concerns

! ! !

Begin Begin End

D I D S
! r 1 !

Begin Begin End End

Begin End
Slide from Kauchak

A basic approach

One way to deal with this is fo use a greedy

algorithm

Loop:

. ?can the document until the <stime> classifier says
rue

« Then scan the document until the </stime> classifier
says true

If the last tfag inserted was <stime> then insert @
</stime> at the end of the document

Naturally, there are smarter algorithms than this
that will do a little beftter

But relying on these two independent classifiers is
not optimal

How can we deal better with
seguencese

« We can make our classification
decisions dependent on previous
classification decisions

 For instance, think of the Hidden
Markov Model as used in POS-tagging

* The probabillity of a verb increases
affer a noun

Basic Sequence Classification

 We will do the following

« We will add a feature template info each
classification decision representing the
previous classification decision

« And we will change the labels we are
predicting, so that in the span between @
start and end boundary we are predicting
a different label than outside

Basic ided

Seminar at 4 pMm
<stime> in-stime </stime>

« The basic idea is that we want to use the previous
classification decision
« We add a special feature template -1_label XXX
* Forinstance, between 4 and pm, we have:
-1 _label_<stime>

« Suppose we have learned reasonable classifiers

 How often should we get a <stime> classification
here? (Think about the fraining data in this sort of
position)

-1 label <stime>

 This should be an extremely strong
Indicator not to annotate a <stime>

« What else should It indicate?

e It should indicate that there must be
either a in-stime or a </stime> here!

Changing the problem slightly

 We'll now change the problem 1o @
problem of annotating fokens (rather
than annotating boundaries)

* This Is fradifional in IE, and you'll see
that it is slightly more powerful than the
boundary style of annotation

 We also make less decisions (see next
slide)

|OB markup

Seminar at 4 pm will be on
O O B-stime l-stime O O O

« This is called IOB markup (or BIO = begin-in-out)
« Thisis a standardly used markup when modeling IE
problems as sequence classification problems

« We can use a variety of models to solve this problem
« One popular model is the Hidden Markov Model,
which you have seen in Statistical Methods
* There, the label is the state
 However, in this course we will (mostly) stay more
general and talk about binary classifiers and one-
against-all

(Greedy) classification with |[OB

Seminar at 4 pm will be on
O O B-stime l-stime O O O

To perform greedy classification, first run your classifier on
"‘Seminar”

You can use a label feature here like
-1_Label_StartOfSentence

Suppose you correctly choose "O"

Then when classifying "at"”, use the feature:
-1_Label _O

Suppose you correctly choose "O"

Then when classifying "4", use the feature:
-1_Label _O

Suppose you correctly choose "B-stime”
Then when classifying "pm", use the feature:
-1_Label_B-stime

Etc...

Training

 How to create the fraining data (do
feature extraction) should be obvious

« We can just use the gold standard label of
the previous position as our feature

BIEWO Markup

* A popular alternative to IOB markup is
BIEWO markup

e Estands for "end"

« W stands for "whole"”, meaning we
have a one-word entity (i.e., this
position is both the begin and end)

Seminar at 4 pMm will be on ..
O @) B-stime E-stime O @) O
Seminar at 4 will be on

O O W-stime O O O

BIEWO vs |OB

« BIEWO fragments the training data

« Recall that we are learning a binary
classifier for each label

* |n our two examples on the previous slide,
this means we are not using the same
classifiers!

« Use BIEWO when single-word mentions
require different features to be active
than the first word of a multi-word
mention

Conclusion

« [|'ve taught you the basics of:
« Binary classification using features
« Multiclass classification (using one-against-all)

» Sequence classification (using a feature that uses the
previous decision)
« And IOB or BIEWO labels

« |'ve skipped a lot of details
« | haven't told you how to actually learn the weight vector
INn the binary classifier
« | also haven't talked about non-greedy ways to do
sequence classification

« And | didn't talk about probabilities, which are used
directly, or at least approximated, in many kinds of
commonly used linear models!

« Hopefully what | did tell you is fairly intuitive and helps
you understand classification, that is the goal

» Further reading (optional):

« Tom Mitchell “Machine Learning” (text
ook

 Thank you for your attention!

