

CENTER FOR INFORMATION AND LANGUAGE PROCESSING

The past, present, and future of NLP from a linguistic perspective

Leonie Weissweiler 12.07.2022

Four questions

- What is the structure of language and how do we acquire it?
- What is the meaning of a word?
- Where in these debates are Transformers?
- Where do we go from here?

What is the structure of language and how do we acquire it?

English Past Tense

- Regular: need \rightarrow needed
- Irregular: is \rightarrow was, goes \rightarrow went, comes \rightarrow came etc.
- Three stages in child language acquisition

Verb Type	Early Verbs	Regular	Other Irregular	Novel
Stage 1	Correct	-	-	-
Stage 2	Regularized	Correct	Regularized	Regularized
Stage 3	Correct	Correct	Regularized	Regularized

\rightarrow Classic example for the debate: how do children learn this?

Rumelhart, D. E., & McClelland, J. L. (1987). Learning the past tenses of English verbs: Implicit rules or parallel distributed processing?.

Chomsky 1957: Humans learn the rules of language

Language is "a system of rules that in some explicit and well-defined way assigns structural descriptions to sentences"

- $S \rightarrow NP + VP$
- NP \rightarrow Det + N

- Rule: Verb in Past Tense → Verb + '-ed'
- Lexicon: is \rightarrow was, goes \rightarrow went ...

. . .

Chomsky: Rules as an innate human bias

- Poverty of the Stimulus: Data that children are exposed to
 - is consistent with an infinite number of possible grammars
 - contains no negative feedback
 - is degenerate in terms of scope and quality
 - is different for each child
- → Language Acquisition Device
- Bias for tree-based grammar structure hardwired into the brain: Universal Grammar
- Contains options for language diversity that children simply choose from

Rumelhart and McClelland 1986: Humans can learn with a Neural Network

- "Implicit knowledge of language may be stored in connections among simple processing units organized into networks"
- "Acquisition occurs by a simple process of adjusting connections between units"

 \rightarrow Past tense without explicit rules

 \rightarrow Joint handling of regular and irregular

forms

 \rightarrow No separate lexicon for irregular

verbs

Rumelhart, D. E., & McClelland, J. L. (1987). Learning the past tenses of English verbs: Implicit rules or parallel distributed processing?.

1988, Pinker & Prince point out issues with R&C's model

- R&M Model only correct in 67% of cases
- Uncharacteristic errors that mix forms, like eat \rightarrow ated
- Over-irregularization, ping \rightarrow pang

- → widespread skepticism towards NNs for modeling linguistic data and human cognition among linguists and cognitive scientists to this day
- \rightarrow NLP likewise doesn't seriously use NNs for another few decades

2018, Kirov & Cotterell: Encoder-Decoder-Network

Two Recurrent Neural Networks with an attention mechanism

Kirov, C., & Cotterell, R. (2018). Recurrent neural networks in linguistic theory: Revisiting Pinker and Prince (1988) and the past tense debate. TACL

Corkery et al. 2019: Instability on Nonce Words

- Replicated K&C's accuracy on real verbs
- Instability over multiple runs of the model
- Overproduction of irregular forms for nonce verbs

What is the meaning of a word and how is it represented in the brain?

1950s: Distributional Semantics

"You shall know a word by the company it keeps" – Firth, 1957 Modes of Meaning

He filled the wampimuk with the substance, passed it around ad we all drunk some

VS.

We found a little, hairy wampimuk sleeping behind the tree.

 \rightarrow What can we learn about wampimuks purely from context?

1970s: Truth-Conditional Semantics

- The meaning of a sentence is the number of possible worlds in which this sentence is true
- \rightarrow Evaluate truth condition of a sentence
- 'If Socrates is a man and all men are mortal, then Socrates is mortal.'
- $[Man(a) \land \forall (Man(x) \rightarrow mortal(x)] \rightarrow mortal(a)$
- But:
 - Questions and commands
 - Modals (may, can, ...)
 - Attitude (I believe that ...)

1970s: Componential Analysis

Analyse the internal semantic structure of a word as composed of a number of

distinct and minimal components of meaning

	Cat	Puma	Dog	Wolf
animate	+	+	+	+
domesticated	+	-	+	-
feline	+	+	-	-

Nida, Eugene A. (1979). Componential analysis of meaning : an introduction to semantic structures (2nd ed.)

Rosch 1973: Prototypes

- Categories do not have clear boundaries
- Humans agree on 'how much' something is a bird
- \rightarrow Birdiness ranking
- \rightarrow Fuzzy representation in the brain

Rosch, E. H. (1973). Natural categories. Cognitive psychology.

1990s: Count-based Word Embeddings

Simply count how often words co-

occur

 \rightarrow Incredibly sparse

The dog barked in the park. The owner of the dog put him on the leash since he barked.

	leash	walk	run	owner	pet	bark
dog	3	5	2	5	3	2
cat	0	3	3	2	3	0
lion	0	3	2	0	1	0
light	0	0	0	0	0	0
bark	1	0	0	2	1	0
car	0	0	1	3	0	0

1995: WordNet

- Manually compiled
- Relations like synonymy, hyponymy, meronymy...
- But: struggles with abstract concepts

Miller, G. A. (1995). WordNet: a lexical database for English. ACM

2013: Trainable Word Embeddings

18 Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

https://medium.com/@hari4om/word-embedding-d816f643140

2013: Abstract Meaning Representation

The boy wants to go.

AMR format (based on PENMAN):

LOGIC format:

 \exists w, b, g: instance(w, want-01) \land instance(g, go-01) \land instance(b, boy) \land arg0(w, b) \land arg1(w, g) \land arg0(g, b)

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., ... & Schneider, N. (2013, August). ACL / LAW

Where in these debates are Transformers?

Transformers: the Victory of Connectionism?

Hewitt, J., & Manning, C. D. (2019, June). A structural probe for finding syntax in word representations. NAACL

Contextual Embeddings

Wiedemann, G., Remus, S., Chawla, A., & Biemann, C. (2019). Does BERT make any sense? Interpretable word sense disambiguation with contextualized embeddings.

Meaning purely from text?

Bender, E. M., & Koller, A. (2020, July). Climbing towards NLU: On meaning, form, and understanding in the age of data. ACL

Probing for Dependency Syntax

Hewitt, J., & Manning, C. D. (2019, June). A structural probe for finding syntax in word representations. NAACL

Structural probes

Blue, below: structural probe tree on BERT; Black, above: Human-Annotated tree

Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., & Levy, O. (2020). Emergent linguistic structure in artificial neural networks trained by self-supervision. *PNAS*

Right for the wrong reasons?

Heuristic	Definition	Example
Lexical overlap	Assume that a premise entails all hypothe- ses constructed from words in the premise	The doctor was paid by the actor. $\xrightarrow{\text{WRONG}}$ The doctor paid the actor.
Subsequence	Assume that a premise entails all of its contiguous subsequences.	The doctor near the actor danced . $\xrightarrow[WRONG]{}$ The actor danced.
Constituent	Assume that a premise entails all complete subtrees in its parse tree.	If the artist slept , the actor ran. $\xrightarrow[WRONG]{}$ The artist slept.

McCoy, T., Pavlick, E., & Linzen, T. (2019, July). Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. ACL

Compositionality

		Case	Training	Generalization	Accuracy Distribution	
•	COGS	Subject \rightarrow Object (common noun)	Subject A hedgehog ate the cake.	<i>Object</i> The baby liked the hedgehog .	Transformer LSTM (Bi) LSTM (Uni) 0.0 0.2 0.4 0.6 0.8 1.0	antic
	Interpr	Object \rightarrow Subject (common noun)	<i>Object</i> Henry liked a cockroach .	<i>Subject</i> The cockroach ate the bat.	Transformer LSTM (Bi) LSTM (Uni) 0.0 0.2 0.4 0.6 0.8 1.0	
		Object \rightarrow Subject (proper noun)	<i>Object</i> Mary saw Charlie .	<i>Subject</i> Charlie ate a donut.	Transformer LSTM (Bi) LSTM (Uni) 0.0 0.2 0.4 0.6 0.8 1.0	
		Primitive \rightarrow Object (proper noun)	Primitive Paula	<i>Object</i> The child helped Paula .	Transformer LSTM (Bi) LSTM (Uni) 0.0 0.2 0.4 0.6 0.8 1.0	
		Depth generalization: PP modifiers	<i>Depth 2</i> Ava saw the ball in the bottle on the table .	<i>Depth 3</i> Ava saw the ball in the bottle on the table on the floor .	Transformer LSTM (Bi) LSTM (Uni) 0.0 0.2 0.4 0.6 0.8 1.0	
		Active \rightarrow Passive	<i>Active</i> Emma blessed William.	Passive A child was blessed .	Transformer LSTM (Bi) LSTM (Uni) 0.0 0.2 0.4 0.6 0.8 1.0	

Kim, N., & Linzen, T. (2020, November). COGS: A compositional generalization challenge based on semantic interpretation. EMNLP

Does injecting structure help?

Glavaš, G., & Vulić, I. (2021, April). Is supervised syntactic parsing beneficial for language understanding tasks? an empirical investigation. EMNLP

Some Questions for Discussion

- For Linguistics: does the success of Neural Networks count in favour of connectionist modeling? What do the improvements with ever larger data mean for the Poverty of the Stimulus?
- For NLP: how do we want our models to develop? Are we going to bring formal syntax or formal semantics back into Transformer models?
- For ML: what biases are large neural networks developing?

Discussion

How should LMs learn language?

Leonie Weissweiler Oettingenstraße 67. 80538 München weissweiler@cis.lmu.de.www.cis.lmu.de/~weissweiler.@laweissweiler

