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Four questions

What is the structure of language and how do we acquire it?

What is the meaning of a word?

Where in these debates are Transformers?

Where do we go from here?
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What is the structure of language and how
do we acquire it?



English Past Tense

* Regular: need - needed
 Irregular: is - was, goes - went, comes > came efc.

« Three stages in child language acquisition

Verb Type Early Verbs Regular Other Irregular Novel
Stage 1 Correct - - -
Stage 2 Regularized Correct Regularized Regularized
Stage 3 Correct Correct Regularized Regularized

- Classic example for the debate: how do children learn this?



Chomsky 1957: Humans learn the rules of language

Language is “a system of rules that in some explicit and well-defined way assigns
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structural descriptions to sentences”
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Rule: Verb in Past Tense - Verb + ‘-ed’ I

Lexicon: is - was, goes = went ... ok b e T



Chomsky: Rules as an innate human bias

* Poverty of the Stimulus: Data that children are exposed to

* IS consistent with an infinite number of possible grammars
e contains no negative feedback

* is degenerate in terms of scope and quality

« is different for each child

- Language Acquisition Device
* Bias for tree-based grammar structure hardwired into the brain: Universal
Grammar

« Contains options for language diversity that children simply choose from



Rumelhart and McClelland 1986: Humans can learn with a
Neural Network

« “Implicit knowledge of language may be stored in connections among simple

processing units organized into networks”

« “Acquisition occurs by a simple process of adjusting connections between units”

Fixed
Encoding Pattern Associator Decoding/Binding

Network ~ ModHiable Connections ebwork - Past tense without explicit rules
4- k&v& —>Joint handling of regular and irregular
X ST Soosz
V.‘.I‘V"\"Zz?zo?.:y =< forms

A= . \ >No separate lexicon for irregular
Phonological * * Phonological
representation

of root form  Wickelfeature Wickelfeature '2‘,"::;"::::: verbs
representation representation

of root form of past tense



1988, Pinker & Prince point out issues with R&C’s model

 R&M Model only correct in 67% of cases
 Uncharacteristic errors that mix forms, like eat - ated

« Qver-irregularization, ping = pang

-> widespread skepticism towards NNs for modeling linguistic data and human
cognition among linguists and cognitive scientists to this day

- NLP likewise doesn’t seriously use NNs for another few decades



2018, Kirov & Cotterell: Encoder-Decoder-Network

Two Recurrent Neural Networks with an attention mechanism
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Corkery et al. 2019: Instability on Nonce Words
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* Replicated K&C’s accuracy on real verbs
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Regular

« Qverproduction of irregular forms for

03 0.7

nonce verbs

Irregular
production prob production prob

_ B humans
J:| O our model

— m _]
2 & &
N NN
Q_ (\Q}'\' ‘00 (S@\Q}og

0
|

OQ~

- The discussion remains open
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What is the meaning of a word and how is
It represented in the brain?



1950s: Distributional Semantics

“You shall know a word by the company it keeps” — Firth, 1957 Modes of Meaning
He filled the wampimuk with the substance, passed it around ad we all drunk some
VS.

We found a little, hairy wampimuk sleeping behind the tree.

- What can we learn about wampimuks purely from context?
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1970s: Truth-Conditional Semantics

 The meaning of a sentence is the number of possible worlds in which this
sentence Is true

« -> Evaluate truth condition of a sentence

« ‘If Socrates is a man and all men are mortal, then Socrates is mortal.’

« [Man(a) A V (Man(x) = mortal(x)] = mortal(a)

e But:

* Questions and commands
* Modals (may, can, ...)
« Attitude (I believe that ...)
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1970s: Componential Analysis

Analyse the internal semantic structure of a word as composed of a number of

distinct and minimal components of meaning

animate + + + +

domesticated + - + -

feline + + - -
14 Nida, Eugene A. (1979). Componential analysis of meaning : an

introduction to semantic structures (2nd ed.)



Rosch 1973: Prototypes

« Categories do not have clear boundaries
 Humans agree on ‘how much’ something is a bird
- Birdiness ranking

- Fuzzy representation in the brain

Figure . 1 Birdiness rankings
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1990s: Count-based Word Embeddings

Simply count how often words co-
occur

- Incredibly sparse
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dog
cat
lion
light
bark
car

The dog barked in the park.
The owner of the dog put him
on the leash since he barked.
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1995: WordNet

« Manually compiled

* Relations like synonymy, hyponymy, meronymy...

« But: struggles with abstract concepts
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2013: Trainable Word Embeddings
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Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781.
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2013: Abstract Meaning Representation

The boy wants to go.

GRAPH format:

ARG1
instance

instance

want-01

instance go-01

boy
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AMR format (based on PENMAN):

(w / want-01
:arg® (b / boy)
rargl (g / go-01
:arg® b))

LOGIC format:

dw,b, g:

instance(w, want-01) A instance(g, go-01) A
instance(b, boy) A argO(w, b) A

argl(w, g) A arg0(g, b)
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Where in these debates are Transformers?



Transformers: the Victory of Connectionism?

Predictions

Contextualized
embeddings

Transformer
Network

Word
embeddings

Masked Input | [MASK] to [MASK]  store

Hewitt, J., & Manning, C. D. (2019, June). A structural probe for finding
syntax in word representations. NAACL



Contextual Embeddings

A Financial Institution:175
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Meaning purely from text?

stick! What

being chased
do | do?

by a bear!

The bear is
chasing me!*

*Reply generated
by GPT2 demo

Bender, E. M., & Koller, A. (2020, July). Climbing towards NLU: On
meaning, form, and understanding in the age of data. ACL
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Probing for Dependency Syntax

Head 8-10 Head 8-11 Head 9-6
Direct objects most attend to their verbs 86.8% Noun premodifiers attend to their noun. Determiners Prepositions most attend to their objects 76.3% of
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Head 7-6 Head 4-10 Head 5-4
Possessive pronouns and _apostrophesomost attend to Passive auxiliar¥ verbs most attend to the verb Coreferent mentions most attend to their
the head of the corresponding NP 80.5% of the time. they modify 82.5% of the time. antecedents 65.1% of the time.
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Structural probes

Blue, below: structural probe tree on BERT; Black, above: Human-Annotated tree

The complex financing plan in the S+L bailout law includes raising $ 30 bilion from debt issued by the newly created RTC .
\ HY/\\ N ﬂ/ /;/V\:j /\_/;/u\/\ 7
Purple, below: structural probe tree on random control representation; Black, above: Human-Annotated tree
The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .

25 Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., & Levy, O. (2020). Emergent

linguistic structure in artificial neural networks trained by self-supervision. PNAS



Right for the wrong reasons?

Heuristic

Definition Example

Lexical overlap

Assume that a premise entails all hypothe-

ses constructed from words in the premise
WRONG

The doctor was paid by the actor.
——— The doctor paid the actor.

Subsequence Assume that a premise entails all of its The doctor near the actor danced.
contiguous subsequences. — The actor danced.
WRONG
Constituent Assume that a premise entails all complete If the artist slept, the actor ran.

subtrees in its parse tree.
WRONG

——— The artist slept.

McCoy, T., Pavlick, E., & Linzen, T. (2019, July). Right for the Wrong Reasons:
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Diagnosing Syntactic Heuristics in Natural Language Inference. ACL
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Compositionality
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COGS

Interpr

Case Training Generalization Accuracy Distribution
Subject — Object Subject Object Tral?ss%/lr T;i')':_‘ L, N
(common noun) A hedgehog ate the cake. The baby liked the hedgehog. LSTM (Uni) $ = » .
0.0 012 014 016 OTB 1t0
Object — Subject Object Subject Tfa[‘;{‘;{?;;; . =k
(common noun) Henry liked a cockroach. The cockroach ate the bat. LSTM (Uni)4 = . -
00 02 04 06 08 10
Object — Subject Object Subject Transformer « ' o A
i i LSTM (Bi) 4=
(proper noun) Mary saw Charlie. Charlie ate a donut. LSTM (Uni)+ o
0.0 Oj2 of4 ofe OtB liO
Primitive — Object Primitive Object Tfa[‘;{gﬂ"?;')’:
(proper noun) Paula The child helped Paula. LSTM (Uni) +
0.0 012 Ot4 016 018 110
Depth generalization: PP Depth 2 Depth 3 Tfa[‘sSTf‘;gT;;;
modifiers Ava saw the ball in the bottle Ava saw the ball in the bottle LSTM (Uni) 4=
on the table. on the table on the floor. 00 02 04 06 08 10
Active — Passive Active Passive TraCSS;CIqT;;: . =
Emma blessed William. A child was blessed. LSTM (Uni) 1 oo o
00 02 04 06 08 10

antic



Does injecting structure help?
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Glavas, G., & Vuli¢, 1. (2021, April). Is supervised syntactic parsing beneficial for
language understanding tasks? an empirical investigation. EMNLP



Some Questions for Discussion

* For Linguistics: does the success of Neural Networks count in favour of
connectionist modeling? What do the improvements with ever larger data mean
for the Poverty of the Stimulus?

* For NLP: how do we want our models to develop? Are we going to bring formal
syntax or formal semantics back into Transformer models?

* For ML: what biases are large neural networks developing?
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Discussion

How should LMs learn language?
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