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Trends of Language Models

Recent Trends

Larger and larger models

Trained on more and more data

Kaplan et al. (2020)
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Emergent Abilities in LLMs

Emergent Abilities

An ability is emergent if it is not present in smaller models but is present
in larger models [Wei et al. (2022a)].

Few-Shot Prompting:
Specify a task by simply prepending
examples of the task before your
example

Also called in-context learning, to
stress that no gradient updates are
performed when learning a new task

Dong et al. (2022)
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Prompting Only Approach

Does not require a large training dataset

Allows a single model checkpoint to handle multiple tasks without
sacrificing generality

Hendrycks et al. (2020)
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Limits of Prompting

Some tasks seem too hard for even LLMs to learn through prompting
alone

Especially tasks involving richer, multi-step reasoning
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Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting enables LLMs
to generate intermediate reasoning steps before
inferring an answer

With a few demonstrations or just a prompt
sentence

Without gradient updates

Additional computation can be allocated to
problems that require more reasoning steps
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Chain-of-Thought (CoT)

Paradigm Shift of Task Format:

Standard Format: <input → output>

CoT Format: <input → rationale → output>

Wei et al. (2022b)
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Results on Math Word Problems

Wei et al. (2022b)
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How does CoT Prompting work?

Chain-of-Thought prompting is an
emergent property of model scale

CoT prompting does not improve
performance for small models

Only enhances performance with
models of ∼100B parameters

Smaller-scale models produce fluent
but illogical CoT
⇒ lower performance

Wei et al. (2022b)
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More Examples

Chain-of-Thought Prompting is applicable to a wide range of problems,
e.g. arithmetic, commonsense, symbolic reasoning, etc.:

Wei et al. (2022b)
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Zero-Shot CoT Prompting

Do we even need examples of
reasoning?

Can we just ask the model to
reason through things?
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Zero-Shot CoT Prompting

With a trigger hint, e.g., “let’s think step by step” after the question
(question + hint):

Kojima et al. (2022)
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LLMs seems like Strong CoT Reasoners

Tasks: multi-step reasoning tasks, e.g., math word problems,
commonsense reasoning, symbolic reasoning, and logical reasoning

Accuracy (%) of different models without CoT (N/A) and with CoT - [Qin et al. (2023)]
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But still unclear...

How these models obtain the answers?

What extent these models can reason?

Whether they rely on simple heuristics rather than the generated
chain-of-thought?
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Language Models Are Greedy Reasoners

Investigating the reasoning capability of LLMs:

Focus on InstructGPT and GPT-3

Construct a new synthetic QA dataset called PRONTOQA for
analysis

Directly evaluating their predicted chains-of-thought (the
interpretable proof steps), rather than the predicted label
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Dataset: PRONTOQA

Proof and Ontology-Generated Question-Answering (PRONTOQA):

Saparov and He (2022)
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Evaluation of CoT

The evaluation focuses on checking if the model derives the right answer for the right reason:

Each sentence of the predicted CoT is parsed into logical form

The provability of the logical form is computed based on previous steps using deduction
rules

Proof steps are categorized based on three dimensions:

Validity (strictly-valid,
broadly-valid, or invalid):

Is the current proof step
provable from previous steps?

Atomicity (atomic or
non-atomic):

Is the current proof step
provable from previous steps
with exactly one application of
a deduction rule?

Utility (correct or misleading):
Is the current proof step’s

premises part of the gold proof? Saparov and He (2022)
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Experimental Setup

Each experiment involves generating QA examples, performing CoT prompting on
LLMs, and analyzing predicted CoTs

Run experiments on InstructGPT and original GPT-3 with greedy decoding

8-shot in-context learning

Examples generated independently from PRONTOQA, controlling variables

Number of hops (1, 3, and 5)
Ordering of sentences from the ontology (top-down or bottom-up
traversal)
⇒ controls the difficulty of the generated example
Type of ontology (fictional, true, and false)

Fictional: use fictional concept names
⇒ avoid pretraining knowledge confounding effects
True: use real concept names and are consistent with the real-world
False: use real concept names but generate false statements
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Proof Analysis Results

Saparov and He (2022)

Real-world knowledge significantly impacts reasoning

Performance similar in fictional and ”false” ontology
settings but much better with a ”true” ontology

Performance remains stable even with an increased
number of hops in the ”true” ontology

Longer proofs are still challenging

Performance more limited as the number of hops
increases

Traversal direction affects reasoning

The number of hops increases, the model becomes
sensitive to the traversal direction of the ontology

Observations:

Most predicted proof steps are strictly-valid

LLMs tend to skip steps by producing non-atomic steps,
just as humans do when they verbalize their reasoning

Main Source of Reasoning Error: misleading steps

⇒ LLMs are able to produce valid proof steps with high
probability but have difficulty with proof planning
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Conclusion

Large language models (LLMs) have shown remarkable reasoning
capabilities given chain-of-thought prompts

LLMs exhibit competence in generating accurate deduction steps,
showcasing their overall reasoning proficiency, even within fictional
contexts

LLMs have challenges in the domain of proof planning, particularly
when confronted with multiple valid deduction steps
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Thanks for your attention!
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