
Renhao Pei

26/05/2023

Linguistic capabilities of large language models
(LLMs)



Outline

• Introduction
• formal linguistic competence vs. functional linguistic competence 

• (Formal) linguistic capabilities of LLMs
• hierarchical structure & Long-distance agreement 

• BERT Rediscovers the Classical NLP Pipeline & Probing

• Probing Pretrained Language Models for the English Comparative 
Correlative

• construction grammar

• syntactic probe

• semantic probe (where the LLMs fail)

• discussion



• LLMs can do things that 

a human can only do if 

they have some linguistic 

knowledge:

• Grammaticality

• Semantical plausibility

• Coreference

• Connectives, discourse 

coherence

• …

Introduction
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Introduction

There are things that LLMs cannot do well:

Formal reasoning (e.g. math problem expressed in natural language)

• LLMs rely on heuristics and fail on more complicated math problems. 

Social reasoning (pragmatics and intent)

• Recent versions of GPT-3 models show a markedly improved capacity to interpret non-literal 

utterances, such as metaphors and polite deceit. However, they are still struggling on 

inferring the intentions behind others’ actions (Sap et al., 2022).
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Introduction

• P.s. ChatGPT can already do this much better!
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Introduction

• But some limitations are not really due to deficient linguistic capabilities

• Drawing on evidence from cognitive neuroscience, formal linguistic competence in 

humans relies on specialized language processing network in the brain, functional 

linguistic competence recruits multiple extralinguistic capacities, such as formal reasoning, 

world knowledge, situation modeling, and social cognition (Mahowald et al., 2023)

• Individuals with global aphasia exhibit severe linguistic deficits, spare nothing but single 

word comprehension for a small set of words.

• However, they have intact non-linguistic cognitive abilities: they can play chess, compose 

music, solve arithmetic problems and logic puzzles, and navigate complex social situations 

(Mahowald et al., 2023)
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Introduction

• Many capacities required for real-life language users are, in fact, not specific to language 

and are supported by distinct brain circuits.

• In line with this distinction, it might be reasonable that LLMs that master many syntactic and 

distributional properties of human language still cannot use language in human-like ways.

• Solution proposed in Mahowald et al. (2023): Modularity
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Introduction

• What are the current linguistic capabilities of LLMs? How do we analyze 

them?

• What are the limitations of LLMs, in terms of linguistic capabilities? 
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Formal linguistic capabilities of LLMs:
Hierarchical structure & Long-distance agreement 

• A crucial formal feature of human language: hierarchical structure

• The meaning of a sentence is not derived by combining the meaning of each word one by 

one linearly. Instead, they are combined hierarchically.

• Long-distance agreement: The keys to the old, wooden kitchen cabinet are on the table.

• Can LLMs learn this hierarchical structure? 

• The length of the forewings (is/*are). . .

• Gulordava et al. (2018) showed that LSTMs trained only to predict the next word in a corpus, 

can predict the long-distance agreement with high accuracy, where a baseline model like 5-

gram cannot.

• It performed well even on semantically nonsensical sentences: The colorless green ideas I 

ate with the chair (sleep/*sleeps)
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Probing
BERT Rediscovers the Classical NLP Pipeline

• Probing: take the internal representations of a language model (vectors) as input, train a new 

separate classifier to learn to recover a particular linguistic distinction from the vector 

representations.

• Tenney et al. (2019) uses a suite of probing tasks, derived from the traditional NLP pipelines 

(POS-tagging, constituency, dependency, semantic role labeling, semantic proto-role etc.) to 

quantify where specific types of linguistic information are encoded on each layer.

• A series of classifiers               are trained to attend to layer l as well as all previous layers.

• These classifiers are cumulative, in the sense that              has a similar number of 

parameters but with access to more information than 
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BERT Rediscovers the Classical NLP 
Pipeline: Differential score

• Performance score (F1 score) intuitively generally 

increases as more layers are added.

• Differential score         : 

• It measures how much better we do on the probing 

task if we observe one additional encoder layer.

• histograms (purple) are differential scores, normalized 

for each task

• horizontal axis is encoder layer
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BERT Rediscovers the Classical NLP 
Pipeline: Differential score

• Some tasks (e.g. POS tagging) can be correctly 

classified very early on, while challenging tasks (e.g.

SPR task) have continued improvement up to the 

highest layers.

• Syntactic information (constituents, dependencies) is 

concentrated on a few layers, while information related 

to semantic tasks (SPR, relation classification) is 

spread across the entire network.
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BERT Rediscovers the Classical NLP 
Pipeline: Classifier predictions across 
layers

china today blacked out a cnn interview that was ...

• “today” is initially tagged as a 

common noun, date, and temporal 

modifier (NN,DATE,ARGM-TMP)

• but later “china today” is 

reinterpreted as a proper noun 

(NNP), i.e. the TV network

• the model then updates the entity 

type (to ORG), and the semantic 

role (as the agent ARG0)
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BERT Rediscovers the Classical NLP 
Pipeline: Conclusion

Deep language models can model two things traditionally believed necessary for language 

processing:

• Lower layers encode more basic syntactic information while higher layers capture more 

complex semantics

• Different levels of hierarchical information (high-level semantic vs. low-level syntactic 

information) interact with each other
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The Better Your Syntax, the Better Your Semantics?
Probing Pretrained Language Models for the English Comparative 
Correlative

• Construction Grammar (CxG): Rather than a system divided into non-overlapping syntactic 

rules and lexical items, CxG views language as a structured system of constructions, that 

encapsulate syntactic and semantic components as single linguistic signs.

• Construction: linguistic units (form-meaning pairs) of different granularity that combine 

syntax and semantics, ranging from individual morphemes up to phrasal elements and fixed 

expressions
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Construction: The English Comparative Correlative

1. The more, the merrier.

2. The longer the bake, the browner the colour.

3. The more she practiced, the better she became.

4. The Better Your Syntax, the Better Your Semantics?

Form

• The Comparative Correlative (CC) consists of two clauses, both of which are 

characterized by an instance of “the” followed by an adverb or an adjective in the 

comparative (‘-er’ or with “more”).

Meaning

• A general cause-and-effect relationship: as (2) can be paraphrased as “If the bake is 

longer, the colour will be more brown”.

• A temporal development: paraphrasing (3) as “She practiced more over time, and she 

became better over time”.
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The Better Your Syntax, the Better Your Semantics? 
Syntax Probing

First of all, can the model recognise the structure of CC?

• Syntactic probing question: Can the PLM distinguish instances of the CC from similar-
looking non-instances? 

Minimal pairs: 

• pairs of sentences which are indistinguishable except for the fact that one of them is an 
instance of the CC and the other is not.

Two ways of constructing minimal pairs:

• (1) Artificial data based on a context-free grammar (CFG)

• (2) Sentences extracted from C4 Corpus
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Syntax Probing: Synthetic Data

Pattern for a positive instance:

• The ADV-er the NUM NOUN VERB 

• “The harder the two cats fight”.

To create a negative instance, reorder the pattern to :

• The ADJ-er NUM VERB the NOUN

• “The harder two fight the cats”.

Negative instance uses the same words as the positive one, but in a different order.
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Syntax Probing: Corpus-based data

Procedures

• (1) Extract sentences from C4 corpus, that follow the pattern: “The” (DET) followed an 
adjective or adverb in the comparative, and at any point later in the sentence again the 
same pattern.

• (2) Group these sentences by their sequence of POS tags.

• (3) Manually classify the sequences as either positive or negative.

Example

• She thinks the more water she drinks the better her skin looks. [Positive]

• The way the older guys help out the younger guys is fantastic. [Negative]
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Syntax Probing: the Probe

• Train a simple logistic regression model on top of the mean-pooled sentence 
embeddings.

Sentences are sampled such that both the positive and the negative class is balanced
across every value of these features: 

• length of the sentence, 

• the start position of the construction, 

• the position of its second half, and the distance between them.

This ensures that the probes are unable to exploit correlations between a class and any 
of the above features.
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Syntax Probing: Results

• Generally, models perform better 
on artificial data than on corpus 
data from the 5th layer on (with the 
exception of a dip in performance 
for BERT large)

• All models perform at 80% or better 
from the middle layers on.
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Semantics Probing

• Can the model, based on the meaning conveyed by the CC, draw a correct inference in a 
specific scenario?

Base:

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

Example

• “The stronger you are, the faster you are. The weaker you are, the slower you are. Terry 
is stronger than John. Therefore, Terry will be [MASK] than John. ”

• Ask the model to predict the probabilities of the mask being “faster” and “slower”. If the 
model has understood the meaning conveyed by the CC, we expect the probability of 
ADJ2 (“faster”) to be high.
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Semantics Probing

• The set-up is comparable in difficulty to the NLU tasks presented in LAMBADA (Paperno
et al., 2016), on which GPT-2 has achieved high zero-shot accuracy.

Several biases might cloud the assessment of the model’s understanding of the CC:

• Recency bias

• Vocabulary bias

• Name bias
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Semantics Probing: Recency bias

Base(S1):

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

That models might prefer to repeat the adjective that is closest to the mask token.

Recency bias(S2):

• To test its influence, we flip the first two sentences so that the correct answer is now 
more recent.

• The ANT1-er you are, the ANT2-er you are. The ADJ1-er you are, the ADJ2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.
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Semantics Probing: Vocabulary bias

Base(S1):

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

The model might assign higher probabilities to some adjectives, purely based on their 
frequency in the pretraining corpus/their lexical identities.

Vocabulary bias(S3):

• To test its influence, ADJ2/ANT2 are swapped. ANT2 is now the correct answer for mask.

• The ADJ1-er you are, the ANT2-er you are. The ANT1-er you are, the ADJ2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

• “The stronger you are, the slower you are. The weaker you are, the faster you are. Terry 
is stronger than John. Therefore, Terry will be [MASK] than John. ”
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Semantics Probing: Name bias

Base(S1):

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

A model might have learned to associate adjectives with names in pretraining, so we

construct a third version, in which we swap the names.

Name bias(S3):

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME2 is ADJ1-er than NAME1. Therefore, NAME2 is [MASK] than NAME1.
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Semantics Probing: Results for biases

Accuracy:

• RoBERTa’s and DeBERTa’s scores are close 
to 50% (i.e., chance) accuracy for both S1 
and S2.

• BERT is more influenced by the bias 
related to the order of the two CCs. The 
average between them is also very close 
to chance.
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Semantics Probing: Results for biases

Decision flip:

• the percentage of sentences for which the 
decision was changed when considering the 
alternative sentence of bias (S2,S3,S4), as 
opposed to original (S1).

• large bias related to both the recency of the 
correct answer (S2) and the choice of 
vocabulary (S3).

• no bias related to the choice of names (S4). 

• Biases are large, no wonder we have 
accuracies at chance level.
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Semantics Probing: Calibration

• Dividing the probability predicted in the task context by the prior probability of a label 
(i.e., its probability if no context is given)

• This gives us the conditional probability of a label given the context, representing the 
true knowledge of the model about this task (CC).
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Semantics Probing: Calibration

• Removing the important information of CC: 

Short (S5):

• NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

Name (S6):

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME1 is ADJ1-er than NAME2. Therefore, NAME3 is [MASK] than NAME4.

Adjective (S7):

• The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are. 
NAME1 is ADJ3-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.
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Semantics Probing: Results for Calibration

• Despite the effort to retrieve any knowledge that the models have about the CC, 

• they are unable to perform clearly above chance, and we have therefore found no 
evidence that the investigated models understand and can use the semantics of the CC.
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Conclusion

• Even though PLMs are able to classify sentences even in difficult circumstances, they do 
not seem to be able to extract the meaning it conveys and use it in context, 

• indicating that while the syntactic aspect of the CC is captured in pretraining, the 
semantic aspect is not.

• Why?

• (1) Models have never had a chance to learn what the CC means because they have 
never seen it applied, and do not have the same opportunities as humans to either 
interact with the speaker to clarify the meaning or to make deductions using 
observations in the real world. 
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Conclusion

• (2) It might be possible that the type of meaning representation required to solve this 
task is beyond the current transformer-style architectures. (Alternative: Logic for NLI 
ect.?) 

• Similar evidence: complex semantics like negation is still beyond state-of-the-art PLMs. 
(Kassner and Schütze, 2020)
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Thank you!
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